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Abstract: In this contribution, we focus on numerical simulation of discrete elastoplastic microstructures with
periodic boundary conditions. The idea of nonuniform transformation field analysis, originally proposed by
Michel and Suquet, is used for simplification of the given problem by reducing the number of internal variables
represented by plastic strains. For that purpose, the plastic strains are approximated by linear combinations of
selected plastic modes. Two approaches to the selection of plastic modes are proposed and compared using a
simple two-dimensional example. Their accuracy is evaluated by comparing the results with the exact solution.
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1. Introduction

This work is focused on numerical simulations of random microstructures with periodic boundary condi-
tions. Numerical simulation of periodic cells plays an important role in numerical homogenization. Ap-
propriate simplification of this problem that can provide a fast macroscopic response with an acceptable
error can be very useful, especially in cases when one simulation of similar microstructures with different
settings is realized multiple times, e.g., in optimization or parameter identification. For that purpose, the
central idea of nonuniform transformation field analysis is used in this work. A given problem is simplified
by approximation of internal variables represented by plastic micro-level strains.

2. Full model

2.1. Kinematics

The considered microstructure is represented by nodes connected by elastoplastic links. The kinematics of
a periodic unit cell can be described by displacements of particles located “inside” the periodic cell, denoted
by dm. Furthermore, displacements of ghost particles, denoted by dg, are employed to enforce periodicity
of the unit cell; see Fig. 1 (a). The macroscopic strain of the unit cell is denoted by e and the micro-level
strain is described by the elongations of the links, denoted by em.

The displacements of ghost particles can be expressed in terms of the displacements of their periodic images
and of the macroscopic strain

dg = Imdm +Pee (1)

where Im is a Boolean matrix which assigns to each ghost particle its “master particle” and Pe reflects the
influence of macroscopic strains on the relative displacements between masters and their ghost images.

The link elongations can be expressed as

em = B∗
mdm +B∗

gdg (2)
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** Prof. Ing. Milan Jirásek, DrSc.: Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7; 166 29 ,
Prague; CZ, Milan.Jirasek@fsv.cvut.cz

*** Prof. Ing. Jan Zeman, Ph.D.: Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7; 166 29 ,
Prague; CZ, Jan.Zeman@cvut.cz

 

25th International Conference  
ENGINEERING MECHANICS 2019 

Svratka, Czech Republic, 13 – 16 May 2019 

NONUNIFORM TRANSFORMATION FIELD ANALYSIS APPLIED  
TO DISCRETE ELASTOPLASTIC MICROSTRUCTURE 

doi: 10.21495/71-0-251

251



where B∗
m and B∗

g are parts of the geometric matrix describing the arrangement of particles and links inside
the periodic cell.

The ghost degrees of freedom can be eliminated by substituting (1) into (2) and the micro-strains can be
written in terms of the independent micro-displacements and macro-strains as

em = B∗
mdm +B∗

g(Imdm +Pee) = Bmdm +Bee = [Bm,Be]

{
dm

e

}
(3)

where

Bm = B∗
m +B∗

gIm (4)
Be = B∗

gPe (5)

2.2. Stored energy

For all links in the periodic cell, we consider linear elasticity and linear hardening described by elastic
modulus E and plastic modulus H . Then the stored energy can be expressed as

E
(ep)
int (em,pm) =

1
2(em − pm)

TDm(em − pm) +
1
2p

T
mHmpm (6)

where Hm and Dm are diagonal matrices describing the hardening stiffness (HA/L) and elastic stiffness
(EA/L), respectively. A denotes the sectional area of the link and L is its length.

The derivative of the stored energy with respect to the micro-strains gives the micro-stresses

sm =
∂E

(ep)
int (em,pm)

∂em
= Dm(em − pm) (7)

For given macroscopic strains e, the particles will find positions that minimize the stored energy E
(ep)
int in

eq. (6). Therefore, partial derivatives of E(ep)
int with respect to the micro-displacements dm must be equal to

zero. This leads to the internal equilibrium conditions

Dmmdm +Dmee−BT
mDmpm = 0 (8)

where Dmm = BT
mDmBm and Dme = BT

mDmBe. The micro-displacements, micro-strains and micro-
stresses can be expressed as

dm = −D−1
mmDmee+D−1

mmB
T
mDmpm (9)

em = Bmdm +Bee = Ame+ Jmpm (10)
sm = Dm(em − pm) = DmAme+Dm(Jm − I)pm (11)

where Am = Be−BmD
−1
mmDme = (I− Jm)Be is a certain strain concentration matrix, which transforms

the macroscopic strains into elongations of individual links at the micro-level and Jm = BmD
−1
mmB

T
mDm

is a matrix containing the micro-strains caused by unit plastic strains imposed on individual links, at zero
macroscopic strains.

For the periodic cell of volume Vp, one can construct the stored energy density Eint(e,pm) =
1
Vp
E

(ep)
int (Ame+

Jmpm,pm) as a function of the macro-strains and the microscopic internal variables, and then eliminate
the micro-displacements. The resulting macroscopic stress-strain law can be written as

s = De−Dppm (12)

where D = AT
mDmAm/Vp is the macroscopic elastic stiffness matrix and Dp = AT

mDm/Vp.

2.3. Evolution law

The stress-strain law must be complemented by an evolution law that describes the growth of the plastic
internal variables pm. Such evolution law can be constructed from a dissipation potential. In our simple
case, we consider unlimited elastic behavior in compression, and so yielding can occur in tension only. The
corresponding loading-unloading conditions can be written as

ṗm ≥ 0, sm ≤ s0m +Hmpm, ṗT
m(sm −Hmpm − s0m) = 0 (13)

where s0m is the vector containing values of yield stress for all links.
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2.4. Summary

The complete description of the model is provided by the following equations and inequalities:

s = De−Dppm (14)
sm = DmAme+Dm(Jm − I)pm (15)

ṗm ≥ 0, sm ≤ s0m +Hmpm, ṗT
m(sm −Hmpm − s0m) = 0 (16)

Here, equation (14) connects the macroscopic stresses, s, with the macroscopic strains, e, and internal
variables, pm. The micro-stresses, sm, are not independent—they are uniquely linked to e and pm by (15).
These micro-stresses are used here only to better understand the meaning of the conditions in (16).

3. Reduced model

For large cells, the numerical solution of the proposed problem becomes computationally very demanding
due to an extremely high number of internal variables. Therefore, the idea of nonuniform transformation
field analysis presented by Michel and Suquet (2003) and extended by Michel and Suquet (2016) is applied
in order to reduce the number of internal variables. In this simplification, the vector of microscopic internal
variables pm is approximated by linear combinations of a few carefully selected fundamental modes of
plastic response, referred to as the plastic modes. The approximation can be written as

pm = Pp (17)

where p is the column vector of plastic mode coefficients that are used in the linear combination and P is
the approximation matrix. Each column of P represents one fundamental plastic mode.

After applying this approximation, the description of the reduced model can be expressed by the following
equations and inequalities:

s = De−DpPp (18)
sm = DmAme+Dm(Jm − I)Pp (19)

Pṗ ≥ 0, PT sm ≤ PT s0m +PTHmPp, ṗTPT (sm −HmPp− s0m) = 0 (20)

Compared to corresponding formulae in the full model, see eq. (14-16), here the original vector of internal
variables (plastic micro-strains) pm is replaced by the vector of plastic coefficients p. The length of p is
given by the number of considered plastic modes and therefore is significantly smaller than the length of
pm. This provides a substantial increase of efficiency of the computational procedure.

4. Results

The proposed approaches have been implemented in a standard numerical scheme (de Souza Neto et al.,
2011). The periodical unit cell with two-dimensional microstructure assembled from 30 × 30 initial ran-
domized cells has been submitted to increasing macroscopic strain with a fixed strain ratio εx : εy = 2 : 1.
Such microstructure consists of 1,800 master nodes, 61 ghost nodes, and 5,400 links; see a smaller example
in Fig. 1 (a). The hardening modulus is set to H = 0.1E and the yield stress to s0 = 0.15E for all links.
The corresponding stress-strain diagrams focused in nonlinear areas are plotted in Fig. 1 (b). The exact
solution (black) is compared with a reduced simulation with different plastic modes (red and blue).

The plastic modes are precomputed in additional simulations. Each plastic mode corresponds to the dis-
tribution of plastic strain pm in individual links at a specific loading level. Two different ways of mode
selection have been tested. In the first way, the microstructure is loaded separately in x- and y-directions.
Then individual modes are obtained for each direction with considered loading factors (εx or εy) either
{0.1, 0.3, 0, 5} or {0.1, 0.2, 0.3, 0.4, 0, 5}. This procedure leads to 6 (dashed blue line) or 10 (solid blue
line) individual modes. In the second case, the microstructure is loaded by imposed strain with a fixed
ratio εx : εy = 2 : 1. And again, loading factors (εx) are considered either as {0.1, 0.3, 0, 5} or as
{0.1, 0.2, 0.3, 0.4, 0, 5}, which leads to 3 (dashed red line) or 5 (solid red line) combined modes.

253



The combined modes provide a very accurate approximation. The final stress response is very close to the
exact simulation, even if just a few combined modes are used. And a relatively small number of combined
modes provides virtually the same result as the exact solution; see the red lines in Fig. 1 (b).

Individual modes have been obtained from different types of simulation. Therefore, they are not able to
cover the exact distribution of plastic strain. This leads to a slight overestimation of the final stress response.
The error is more significant in the y-direction; see the blue lines in Fig. 1 (b). This is caused by the fact
that the maximum value of εy reached during loading is 0.25, an thus higher modes (0.4 and 0.5) are not
activated for this direction. In other words, for the used setting, the x-direction is approximated with more
modes than the y-direction.

As one can expect, employment of more modes provide a smoother stress response, because particular
modes can be activated continuously during the loading process.

(a) (b)

Fig. 1: (a) Example of randomized microstructure with 10 × 10 cells and periodic boundaries (dotted
line), master particles (filled) and ghost particles (hollow); (b) nonlinear parts of stress-strain diagrams for
microstructure with 30× 30 initial cells loaded by macroscopic strain with strain ratio εx : εy = 2 : 1.

5. Conclusions

The presented results have shown that model reduction based on the nonuniform transformation field anal-
ysis can be used to simplify the given problem and significantly reduce the number of internal variables
while the error in the macroscopic results remains acceptable.

The selection of plastic modes has turned out to be essential for the accuracy of the presented simplification.
Therefore, future research will focus on the development of appropriate techniques of generating universal
plastic modes.
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