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Abstract: In the paper a description of heat transfer in a one-dimensional metal films is considered. 
The Boltzmann transport equation and a two-temperature model supplemented by appropriate boundary 
and initial conditions are applied to analyze the thermal process in a heated thin metal film. The problem 
considered is solved by the lattice Boltzmann method and the finite difference method respectively. 
The internal heat source is given in two different ways. In the first way, the internal heat source is considered 
a constant value, while in the second way an exponential function which simulates irradiation using a laser 
pulse is used. In the final part of the paper numerical examples of comparison of two methods 
and conclusions are presented. 
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1. Introduction 

In metals heat transport is generally realized by two kinds of heat carriers: electrons and quanta of lattice 
vibrations called phonons. It is important to take into account these both energy carriers when creating 
mathematical model of this phenomena in the nanoscale. The use of the system of coupled Boltzmann 
transport equations and the two-temperature model, here proposed, allow to determine the heat exchange 
in the electron gas and the metal lattice, which is not the case when using the popular Fourier equation. 

2. Methods 

In the paper the Boltzmann transport equation and two-temperature model are considered. A thin metal 
film is irradiated by laser. The internal heat source is given in two ways. In the first one, a constant heat 
source Q(t) = const is considered. The second way takes into account the temporal variation of the laser 
pulse approximated by a form of exponential function (Lee, 2011).  

 0( ) tQ t I e−β=  (1) 

where I0 is the peak power intensity of the laser pulse, β  is the laser pulse parameter that determines the 
shape of the pulse. 

2.1. The lattice Boltzmann method and the Boltzmann transport equation 

The unsteady BTEs transformed into equivalent energy density equations for the 1D coupled model with 
two kinds of carriers (e-electrons and l-lattice vibrations called phonons) can be written using the 
formulas (Escobar, 2006 and Hopkins, 2009): 
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where ,e le e  are the energy densities, 0 0,e le e  are the equilibrium energies densities, ,e lv v  are the 
frequency-dependent propagation speed, ,e lτ τ  are the relaxation times, t denotes the time and ,e lQ Q  are 
the energies source related to an unit of volume for electrons and lattice respectively. 

The electron and phonon energy densities at their equivalent nonequilibrium temperatures are given by 
the formulas (Escobar, 2006) 
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where DΘ  is the Debye temperature of the solid, bk  is the Boltzmann constant, Te, Tl are the temperature 

for electrons and phonons respectively, while en is the electron density and phη is the phonon density. 
The electron and phonon energy sources are calculated using the following expressions  

 ( , )  ( ) ( ( , ) ( , )), ( , )  ( ( , ) ( , ))= − − = −e e ph ph e phQ x t Q t G T x t T x t Q x t G T x t T x t  (6) 

where G is the electron-phonon coupling factor which characterizes the energy exchange between 
electrons and phonons. Eqs. (2) and (3) should be supplemented by the initial and boundary conditions.  

2.2.  The finite difference method and a two-temperature model 

Two-temperature model describing the temporal and spatial evolution of the lattice and electrons 
temperatures (Tl and Te) in the irradiated metal can be written (Chen, 2001) (1D problem) 
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where Te (x, t), Tl (x, t) are the temperatures of electrons and lattice, respectively, Ce (Te), Cl are the 
volumetric specific heats, G is the electron-phonon coupling factor which characterizes the energy 
exchange between electrons and phonons, Q(t) is the source function associated with the irradiation. 

Instead of the classical Fourier law the following formulas are introduced 
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where λe(Te, Tl), λl are the thermal conductivities of electrons and lattice, respectively, τe is the relaxation 
time of free electrons in metals, τl is the relaxation time in phonon collisions. 

For low laser intensity the following relationships describing the electrons thermal capacity and 
volumetric specific heat are widely used (Chen, 2001 and Lin, 2008) 
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where λ0 and A are the material constants (Majchrzak, 2012). For low laser intensity λl, Cl, and G are also 
constant values depended on material.  

To solve the problem formulated the algorithm basing on the finite difference method is used (Majchrzak, 
2012). A staggered grid is introduced in which the temperature nodes i = 0, 2, 4, ..., N and the heat fluxes 
nodes j = 1, 3, ...., N−1 are introduced. It means that Ti

f = T (ih, fΔt) and qj 
f = q(jh, fΔt), where h is the 

mesh size, Δt is the time step  f   = 0, 1, 2, ..., F. 

3.  Results of computations 

As a numerical example the heat transport in a gold thin film of the thickness L = 100 nm has been 
analysed. The following input data have been introduced: the relaxation times 0.04ps,eτ =  0.8psphτ = , the 
Debye temperature 170KDΘ = , the peak power intensity of the laser pulse I0 = 2·1013 W/m2, the coupling 
factor G = 2.3·1016 W/m3K, the boundary conditions of the 2nd type on the both edges 

1 2(0, ) ( , ) 0k k
b bq t q L t= = , 

the initial temperature 0 300KT = . The lattice step 1nmxΔ =  and the time step 0.001pstΔ =  have been 
assumed. Three values of the laser pulse parameter β  was taken into account: 1) 0.5.1013 s-1; 2) 1013 s-1; 
3) 1.5.1013 s-1 (see Fig. 1b).  

a)  b)  
Fig. 1: Heating curves for x = 0: a) Q(t) = const; b) 0( ) tQ t I e−β= . 

Tab. 1: Comparison of temperatures in node x=0, 1310β = s-1. 

time FDM LBM [ ]%δ  time FDM LBM [ ]%δ  

0.04 440.0907 438.3789 0.38897 0.24 582.5611 580.8897 0.28691 
0.08 508.7353 506.5825 0.42317 0.28 582.7515 581.5039 0.21409 
0.12 546.5965 544.3312 0.41444 0.32 580.2610 579.5346 0.12519 
0.16 567.5201 565.3244 0.38689 0.36 576.0237 575.9115 0.01948 
0.2 578.2466 576.2557 0.3443 0.4 570.6550 571.2458 0.1035 

In Figs. 1a and 1b heating curves obtained using Boltzmann transport equation (continuous line) and two 
temperature model (triangles) is shown. The consistency of the results is very high. Tab. 1 presents 
estimated error between these two methods. In Fig. 2 the distributions of heat source function for three 
different values of β : 1) 0.5.1013 s-1; 2) 1013 s-1; 3) 1.5.1013 s-1 are presented. 

To compare the results of the two presented approaches the relative error δ is defined (see Tab. 1) 

 100%FDM LBM
FDM
−

δ = ⋅  (13) 
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Fig. 2: Heat source function. 

4. Conclusions 

In the paper the temperatures obtained using two different mathematical models: the Boltzmann transport 
equation and the two-temperature model were compared. Numerical methods: the lattice Boltzmann 
method and the finite difference method respectively were used to solve them. The results obtained when 
applying the two types of heat sources are comparable.  
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