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Abstract: The geometrical and physical imperfections of systems can drastically reduce their critical loading. 

These imperfections are usually of stochastic character and, therefore, they act as random parametric 

perturbations of coefficients of corresponding differential equations. In this paper, the imperfections are 

introduced as multidimensional statistics on the set of a large number of realizations of the same system. As far 

as the amount of information is small or the imperfections themselves cannot be considered small, the convex 

analysis is preferable. The paper compares results obtained by both stochastic and convex analyses for hyper-

prism and demonstrates when each of them is more convenient to be used. Besides of the hyper-prism, the 

possibilities and properties of other modifications of convex method are considered, especially those based 

on the definition of imperfection zone marked as a centric hyper-ellipsoid or as an eccentric hyper-ellipsoid. 

The analytical background was brought up to the level when only a few configurations of imperfections are 

sufficient to be evaluated numerically. These configurations are obtained by means of the convex analysis 

as points of extreme critical loading using the Lagrange method of constrained extremes.   

Keywords:  Convex domain method, System stability, Hyper-prism and hyper-ellipsoid domains. 

1. Introduction 

The geometric imperfection of thin-walled systems can be divided into three groups. Large imperfections 

usually do not have a random character and their influence can be respected by a certain representative 

deterministic shape. In contrast, small imperfections are typically stochastic in nature and their influence is 

necessary to be examined using methods of stochastic mechanics. The original work on this topic was 

probably published by Jacquot (1972). This was followed by a number of other papers discussing this 

problem from other viewpoints, see, e.g., (Elishakoff, 1978). 

An extensive area of medium imperfections is between these two categories. They have mostly also 

a random character and thus their influence can be studied by means of stochastic methods. It reveals, 

however, that permissible loads, resulting from a probabilistic model, are not significantly higher than those 

following from the convex analysis of the Lagrangian type, see, e. g., papers by Kirkpatrick and Holmes 

(1989), Elishakoff and Ben-Haim (1990), Lindberg (1992) or Volmir (1963). However, the main goal of 

the convex method reveals in the case when only a limited set of stochastic information about investigated 

imperfections is available. 

2. Variants of the convex method  

Shape imperfections are usually described using some generalized coordinates. The aim is to best describe 

the real shape of the system using as few parameters as possible. The generalized coordinates should be 

chosen in such a way that they are stochastically either fully independent, or have a non-zero correlation 

with only a minimal number of other parameters. 

The basic idea of the convex method is to limit the length of a radius vector whose components are 

parameters describing the state of imperfections in a certain convex finite-dimensional hyper-body in the 

space of imperfection parameters. Let us call this domain as a control body. Dimension of the corresponding 
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hyper-space equals the number of random parameters describing an imperfect shape of the investigated 

system. In this hyper-body (including its boundary) is then looked for the minimal critical load value in the 

specified sense. 

The critical load 𝑃𝑐 is a function of parameters 𝑉0𝑘, which can be formally written in the form: 

 

Function 𝐹(𝑽0) is implicit and nonlinear. It represents usually a certain numerical process. If we searching 

its absolute minimum on a mentioned body, it means to find constrained extremes on its boundary and free 

extremes within this domain, to evaluate possible singular points and, finally, to choose the absolute 

minimum among all these cases. 

The chosen shape has a major influence on the following procedure of solution and on final obtained results. 

Although this shape is not a priori limited, practical reasons lead to employment of different variants of 

hyper-prism or hyper-ellipsoid.  

3. Hyper-prism comparison of stochastic and convex methods 

The body including boundary is described in the simplest case by a system of inequalities: 

 

Each of 𝑚 parameters is described separately. Each constraint can be modified independently. Each 

parameter 𝑑𝑘 can be a function of additional quantities, for instance of the time. The method, however, has 

some shortcomings. Because the procedure minimizes directly the components of the radius-vector and not 

the radius-vector itself, the total level of imperfection is not very transparent. Also, the domain boundary 

has not a continuous normal vector. 

Using Eqs. (1) and (2), one can construct an auxiliary function: 

 

where 𝜆𝑘 are Lagrangian multipliers. The differential system can be deduced from Eq. (2): 

 

The system Eq. (4) is a nonlinear system for unknowns 𝑉𝑖𝑘 ,  𝜆𝑘. With respect to the fact that the body (2) 

has not the smooth boundary, considering 𝑚 = 4, candidates can be selected among these points: 

 

 

 

 

 

Indices 𝑖,  𝑗,  𝑘,  𝑙 =  1,  . . . ,  4 in cases b) - e). In each combination they are different numbers from each 

other. If any of derivations 𝜕𝐹(𝐕0)/𝜕𝑉0𝑘 = 0 in any point of the body Eq. (2) gets infinite value, then it is 

necessary to treat this singular point separately, as it is beyond influence of Eqs. (5). 

Such points are all cases where there is one or more coordinates 𝑉0𝑘 = 0. In other words, every point given 

by Eq. (5), where it holds 𝜕𝐹(𝐕0)/𝜕𝑉0𝑘 = 0, is replaced by conditions 𝑉0𝑘 = 0. Therefore, it is sufficient 

to consider the whole task in points (5) and select the minimum, which represents the critical load. 

Practically, that means we have identified a finite number of initial imperfection configurations and, 

subsequently, such setting of initial imperfections which leads to the minimum 𝑃𝑐. 

Stochastic approach considers parameters 𝑉0𝑘 to be random numbers on a set of the system realizations. In 

order to reach results comparable with those obtained using the convex method on the hyper-prism, one 

considers individual 𝑉0𝑘 to be stochastically independent. It means that each 𝑉0𝑘 can be described separately 

(1) 

(2) 

(3) 

(4) 

(5) 
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by means of PDF 𝑝(𝑉0𝑘) in one variable 𝑉0𝑘. The joint PDF is a product of all these functions. In practice, 

the marginal PDF approach the normal distribution with truncated tails, see, e.g., (Náprstek, 2019). So that, 

it can be written: 

 

where: 𝐷𝑘 – variance of 𝑉0𝑘 (in Gaussian meaning); 

𝑑𝑘 – parameters limiting tails of PDF - identical with  Eq. (2); 

𝑁𝑘 – normalization constant: 

 
Let us compare critical loads of an elastic prismatic bar resting on an elastic layer obtained using both 

methods: 

 

 

where: 𝑣0(𝑥) – initial deflection of the bar axis from a straight line; 

𝑟1, 𝑟3 – positive constants characterizing linear and nonlinear parts of the layer stiffness;  

𝑃 – axial force (𝑃 > 0 represents pressure). 

Initial deflection (imperfection) 𝑣0(𝑥) and deflection 𝑣(𝑥) can be written in a form of truncated 

trigonometric expansions: 

  

Random variables 𝑉0𝑘 in Eq. (10) correspond to imperfection parameters in the meaning of this section. If 

we consider the effect of 𝑉0𝑘 on 𝑣0(𝑥) or 𝑣(𝑥) in the meaning of a particular norm, reference can be made 

to the basic theory of Fourier series. The necessary conditions for convergence of Fourier series imply that 

𝑑𝑘 should converge faster than 𝑘−2 for k→∞.  In fact it means that the influence of imperfections, starting 

at a certain 𝑘 = 𝑚 + 1, has to be lower than the specified norm of the displacement increment. Although 

these conditions will be mostly met in practice and, moreover, higher modes do not emerge in the non-

linear formulation, a necessity to limit the index 𝑘 to a certain value is theoretically inconvenient. On the 

other hand, the introduction of a finite number of modes allows a more transparent analysis of the problem. 

Let us now consider the numerical results summarized in Fig. 1, see (Volmir, 1963). The graph compares 

critical loads obtained by the stochastic analysis at the reliability level 1 − 𝑅 = 10−2, 10−3, 10−4 and 

critical loads obtained by convex analysis. The first four members of the expansion Eq. (10) are taken into 

account in both cases. All constraints 𝑑𝑘 used in both types of analysis are identical and are equal to 𝑑. 

Stochastic analysis was performed by means of Monte Carlo simulations, every time performing  

a) 

 

b) 

 

Fig. 1: Dependence of the critical load 𝑃𝑐 on initial conditions setting using stochastic and convex 

analysis: a) 
𝐷

𝐿
= 0.001; b) 𝐷/𝐿 = 0.01. 

(6) 

(7) 

(8) 

(9) 

(10) 
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105 simulation samples. Relatively small imperfections 𝑉0𝑘 are considered in case a), 𝐷/𝐿 = 0.001, the 

same  value is used for 𝑘 = 1,  . . . ,  4. In case b), 𝐷/𝐿 = 0.01 is considered. From the pictures we can see 

that in case of small variance is, starting roughly 𝑑/𝐿 = 0.002, the difference between the stochastic and 

convex analysis results considerable and not too dependent on the level of reliability. In addition, the critical 

load for 𝑑/𝐿 > 0.002 at 𝐷/𝐿 = 0.001 almost does not change. In case b), i.e. 𝐷/𝐿 = 0.01, the differences 

between results of both methods are rather small, albeit critical loads obtained by means of convex analysis 

are slightly more conservative. Differences between the two methods arise from the fact that the convex 

method only perceives the extreme settings of imperfections given by Eq. (2) and does not reflect the 

feasibility of the particular setting of initial conditions, which may occur with the specified probability.  

4. Centric hyper-ellipsoids 

Many inconveniences can be avoided using a hyper-ellipsoid instead of a hyper-prism. Let us define: 

 

𝐕0 – vector of Fourier coefficients, see Eqs. (2) and (10); 𝐅 – square positive definite matrix of a quadratic 

form, 𝑟2 – constant characterizing a size of the body. 

The shape and orientation of principal axes of the body Eq. (11) can be sensitively influenced by means of 

selection of a matrix 𝐅. For instance, introduced 𝐅 as a unit matrix: 

 
The diagonal matrix Eq. (12) can be modified in various ways. For example, individual diagonal elements 

can correspond to the squared reciprocal value of the respective member variance. After another 

modification  we can select function 𝑔𝑞(𝑘): 

 

where a constant 𝑞 is chosen usually between 1 and 2. Matrix 𝐅 is selected to be diagonal once again: 

 

Whether the matrix 𝐅 is chosen in the form of Eqs. (12) or (14), it is necessary first to establish a link 

between the parameter 𝑟 and the maximum total initial deviations. The initial deviation 𝑣0(𝑥) can be written 

in the form of a scalar product: 

 

where 𝝋(𝑥) are generalized orthonormal coordinates. In case of Fourier generalized coordinates, 𝝋(𝑥) is 

a trigonometric sequence similar, for example, to the series Eq. (10). The parameter 𝑟, i.e. the ellipsoid size, 

is to be chosen so that the largest value of initial imperfections for all possible vector selection 𝐕0 equals 

Δ. It means that the following should apply: 

   

The extreme is searched for using Lagrangian method as a next step. With respect to the diagonal character 

of 𝐅, application of the Minkowski inequality, integration on the interval 𝑥 ∈ (0; 𝐿) and some additional 

modifications, the upper estimate of the maximal deflection can be deduced: 

 
It reveals that the maximal deflection can be assessed by means of a weighted mean of norms of functions 

𝜑𝑘(𝑥, 𝑃).  

5. Eccentric hyper-ellipsoid 

Let us consider a model based on an eccentric hyper-ellipsoid: 

 

𝐒0 – shift of the hyper-ellipsoid center; nominal values of Fourier coefficients of initial imperfections. 

(11) 

(12) 

(13) 

(18) 

(14) 

(15) 

(16) 

(17) 

377



 

 6 

The shift 𝐒0 provides additional degrees of freedom to admit non-zero initial imperfections in Fourier series 

coefficients. Vector 𝐒0 can be defined as follows: 

 

Let us select parameter 𝑟, which assess the ellipsoid size, and let us try to put it into a relation with the 

largest initial displacement of the system. The maximal initial displacement on a set of realizations as 

a function of space coordinates can expressed as follows: 

  
We look for an extreme of a linear function which, again, emerges on the boundary of the domain. Hence 

the Lagrangian procedure will be used. The auxiliary constraint follows from the shape of the body Eq. (18): 

 

Provided 𝐅 is selected in the diagonal form, one obtains: 

 

The parameter 𝑟 should be chosen so that Δ equals the largest value, which 𝑣0𝑚𝑎𝑥(𝑥) takes in the interval 

𝑥 ∈ (0; 𝐿). It means that 𝑟 is selected so that it holds: 

 

To find the maximum displacement at the ellipsoid boundary, the Lagrange method will be used again. We 

are looking for a maximum of 𝐕0
𝑻𝝋(𝑥, 𝑃) respecting auxiliary conditions. If 𝐅 is diagonal, we obtain after 

several steps an estimate of the maxima: 

 

Let us remember that 𝐒0 is the vector of Fourier coefficients of the nominal imperfections. For this reason 

is 𝐒0
𝑻𝝋(𝑥) a nominal displacement in the point 𝑥 and max (

𝑥
𝐒0

𝑻𝝋(𝑥)) is the maximal displacement in the 

whole interval 𝑥 ∈ (0, 𝐿).  

Let us compare the most important results using the centric and eccentric ellipsoids. Expression Eq. (24) 

fulfills Eq. (17) for 𝐒0 = 0, as it can be expected, because ℛ𝐸𝑒{∙} reduces onto  ℛ𝐶𝑒{∙} when 𝐒0 = 0. Both 

expressions have a form of weighted mean values, where the weight coefficients are diagonal elements of 

the matrix 𝐅−1. It means that sensitivity of both expressions to an upper value of 𝑚, index 𝑘 and to 

a selection of a particular form of the matrix 𝐅 is roughly the same. However, numerical results indicate 

that the centric ellipsoid leads to more conservative results than the eccentric one. It follows from the fact 

that a summation in the numerator in Eq. (22) is multiplied by Δ, while in Eq. (24) is the corresponding 

factor  (Δ − max (
𝑥

𝐒0
𝑻𝝋(𝑥))). 

6. Conclusion 

Determination of a critical load of a bar by means of the convex method was outlined. Analytical and 

numerical results using three types of a control body, namely hyper-prism, centric hyper-ellipsoid and 

eccentric hyper-ellipsoid were shown. It reveals that the most conservative results follow from an analysis 

performed on the hyper-prism. More favorable results can be obtained using centric and the most favorable 

eccentric ellipsoid. Indeed, it seems that the eccentric ellipsoid respects better the natural character of 

imperfections. 

In a particular case is the control body selection highly dependent on the extent and structure of the 

information available regarding initial imperfections. Provided information extent is very limited, it is 

necessary to select a proper control body of the hyper-prism. Although probabilistic analysis gives always 

more favorable results, it cannot be used always. The cause may be again a lack of information which makes 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

378



 

 7 

impossible application of a probabilistic analysis. Another cause may be relatively large imperfections, 

when the difference in results obtained by both convex as well as probabilistic methods is rather small. 

The convex method makes it possible to give a very clear overview concerning a contribution of particular 

components of imperfections to reduce the critical load with respect to nominal state. Requirements to limit 

imperfections can be relatively easy to define using few parameters with obvious geometric interpretations. 

The significant advantage of the convex method is also much less effort necessary to carry out an analysis 

in a particular case compared to any variant of stochastic analysis. 
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