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Abstract: The paper is focused on study of distribution based global sensitivity indices derived directly from 

polynomial chaos expansion. The significant advantage is that, once the approximation in form of polynomial 

chaos expansion is available it is possible to obtain first statistical moments, Sobol indices and also distribution 

function with proposed moment-independent sensitivity indices without additional computational demands. 

The key idea is to use only specific part of approximation and compare obtained conditional probability 

cumulative distribution function to original distribution assuming all variables free to vary. The difference 

between distributions is measured by Cramer-von Misses distance herein. However, it is generally possible to 

employ any type of measure. The method is validated by analytical example with known solution. Proposed 

approach is highly efficient and thus it can be recommended for practical applications, when it is not possible 

to perform sensitivity analysis by standard Monte Carlo approach.  
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1. Introduction 

The mathematical model of a physical problem can be seen as a function f of a set of input variables f(X). 

Moreover, it is assumed that f(X) is highly computationally expensive model of input random variables. 

The task of analysis is uncertainty quantification of mathematical model, which is not feasible and 

therefore, it is necessary to employ surrogate model. One of the most effective surrogate models is 

Polynomial Chaos Expansion (PCE) originally proposed by Norbert Wiener (1938). A PCE is a method for 

representing arbitrary random variables (response of mathematical model) as a function of another random 

variable described by distribution function. Once the PCE is available, it is feasible to perform large amount 

of calculations to obtain information of interest about original mathematical model, e.g. moment analysis 

or sensitivity analysis. There are generally two types of sensitivity analyses, on the one hand local 

sensitivity analysis focused on behavior of function around a point of interest (e.g. one-at-a-time and 

screening). On the other hand, global sensitivity analysis assuming whole design domain e.g. regression 

based methods and analysis of variance (ANOVA) (Sobol, 2001). A global sensitivity analysis is an area 

of interest for many researchers nowadays, especially ANOVA represented by Sobol’ indices. 

Nevertheless, ANOVA methods are still highly computationally demanding. Fortunately, it was shown by 

Sudret (2008) how to derive Sobol’ indices directly from PCE. It leads to the significant reduction 

of computational demands in comparison with traditional pick and freeze Monte Carlo approach.   

Although ANOVA represents a strong tool for global sensitivity analysis, it takes only first two statistical 

moments into account. Therefore, recent theoretical research is focused on so called moment-independent 

sensitivity analysis. These methods generally take whole distribution of random variables into account. 

Herein, sensitivity measure based on Cramér-von Mises distance recently proposed by Gamboa et al. (2018) 

is utilized and the theory of method is briefly discussed in section 3. Unfortunately, a moment-independent 

sensitivity analysis is computationally even more demanding than ANOVA. Therefore, this pilot study will 

discuss possibility of utilizing PCE as a surrogate model for derivation of moment-independent sensitivity 

measures.  
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2. Polynomial Chaos Expansion 

Assume a probability space (Ω, ℱ , 𝒫), where Ω is an event space, ℱ  is a σ-algebra on Ω and 𝒫 is 
a probability measure on ℱ . If the input vector of mathematical model is a random vector X(ω), ω ∈ Ω, 

then the model response Y(ω) is a random variable. A PCE is a method of representing variable Y as 

a function of an another random variable Ξ called germ with a given distribution and representing that 

function as a polynomial expansion. A set of polynomials orthonormal with respect to the distribution of the 

germ are used as a basis of the Hilbert space 𝐻 ⊃ 𝑌 (assuming Y has a finite variance). The condition 

of orthogonality is given by inner product of any two functions 𝜓𝑗and 𝜓𝑘with respect to the probability 

density function 𝑝𝜉  of Ξ as follows: 

 ⟨𝜓𝑗 , 𝜓𝑘⟩ = ∫ 𝜓𝑗(𝜉)𝜓𝑘 (𝜉)𝑝𝜉(𝜉)𝑑𝜉 = 𝛿𝑗𝑘, (1) 

where 𝛿𝑗𝑘is Kronecker delta. In case of X and Ξ being vectors containing M random variables, the 

polynomial j is multivariate and it is built up as a tensor product of univariate orthogonal polynomials. 

The random variable of interest (response of mathematical model f ) can be then represented according to 

Soize and Ghanem (2004) as:  

 𝑌 = 𝑓(𝐗) = ∑ 𝛽𝛂𝛹𝛂(𝛏)𝜶∈ℕ𝑴 , (2) 

where β are deterministic coefficients, ψ are multivariate orthonormal polynomials and 𝜶 ∈ ℕ𝑴 is a set of 

integers called multi-index. The PCE according to Eq. (2) must be truncated to finite number of terms P for 

practical computation. Common approach is to use terms whose total degree |α| is equal or less than the 

given p. Therefore, the truncated set of PCE terms is  

 𝐴𝑀,𝑝 = {𝛼 ∈ ℕ𝑀 :|𝛼| = ∑ 𝛼𝑖 ≤ 𝑝𝑀
𝑖=1 } (3) 

3. Distribution-based sensitivity analysis 

Let 𝑝𝑌(𝑦) be the density function of model response obtained with all parameters free to vary according to 

their probability distribution. If we freeze one variable on xi, we would obtain the conditional density 

function 𝑝𝑌∣𝑋1
(𝑦) of model response given Xi. The shift between 𝑝𝑌(𝑦) and 𝑝𝑌∣𝑋1

(𝑦) can be measured for 

example as proposed by Borgonovo (2007): 

 𝑠(𝑋𝑖) = ∫|𝑝𝑌(𝑦) − 𝑝𝑌∣𝑋𝑖
(𝑦)|  𝑑𝑦 (4) 

It is clear, that 𝑝𝑌∣𝑋1
(𝑦) is dependent on a specific value of xi and s(Xi) is a random variable.  Assuming all 

possible xi, sensitivity indices based on expected shift between density functions is: 

 𝛿𝑖 =
1

2
𝔼𝑋𝑖

[𝑠(𝑋𝑖)] (5) 

Further, following the idea of Borgonovo, Gamboa et al. (2018) recently proposed sensitivity measure 

based on Cramér-von Mises distance between cumulative distribution functions F (CDF), which will be 

utilized herein. Using Hoeffding-Sobol’ decomposition of function, Gamboa et al. derived generally 

following Cramér-von Mises indices (CVM) for any 𝒙 ∈ ℝ𝑴and any subset 𝒖 ⊆ 𝐼 = {1, . . . , 𝑀}, xu 

concatenates the components of x whose indices are included in u. The CVM for xu are defined as: 

 𝐶𝒖 =
∫ 𝔼

ℝ
[(𝐹𝒖(𝑡)−𝐹(𝑡))

2
]𝑑𝐹(𝑡)

∫ 𝐹(𝑡)(1−𝐹(𝑡))𝑑𝐹(𝑡)
ℝ

, (6) 

where (𝐹𝒖(𝑡) − 𝐹(𝑡))
2
 is Cramér-von Mises distance between original CDF F and conditional CDF Fu 

given Xu, which is normalized by denominator analogously to Sobol’ indices. Unfortunately, a double-loop 

Monte Carlo approach must be performed for practical computation of CVM and Sobol’ indices, which 

may be computationally demanding or even not feasible for practical examples. 

3.1. PCE and distribution-based sensitivity analysis 

The PCE is generally a method to construct a random variable with the same distribution as a model 

response Y. However, it can be also utilized as a surrogate model 𝑓𝑃𝐶𝐸. Therefore, it is possible to utilize 

PCE to obtain the distribution of approximated model response Y PCE using a kernel density estimator. 

Remember that, each term of PCE is associated to the specific random variable or combination of variables. 

Thus it is possible to reorder terms of PCE to obtain approximation in form of Hoeffding-Sobol’ 
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decomposition. Therefore, it is possible to express the influence of selected input random variable by 

evaluation of surrogate model in form of PCE reduced to selected terms. Specifically, for any 

𝒖 ⊂ 𝐼 = {1, . . . , 𝑀}let ~𝐮 be the complement to u, i.e. ~𝐮 = 𝐼\𝐮. The reduced PCE approximation of 

original model 𝑓𝒖
𝑃𝐶𝐸 (neglecting the influence of selected variables Xu whose indices are included in u) has 

the following form: 

 𝑓𝒖
𝑃𝐶𝐸(𝒙) = 𝛽0 + ∑ 𝛽𝜶𝛼∈𝐴∼𝒖

𝛹𝜶(𝝃),  𝐴∼𝒖 = {𝜶 ∈ 𝐴𝑀,𝑝 : 𝛼𝑘 ≠ 0 ↔ 𝑘 ∈∼ 𝒖 } (7) 

The proposed sensitivity analysis is based on difference between the cumulative distribution function 𝐹𝑌𝑃𝐶𝐸
 

obtained by kernel cumulative estimation using all terms of created PCE and conditional cumulative 

distribution function 𝐹𝑌𝑃𝐶𝐸

𝒖  based on results of 𝑓𝒖
𝑃𝐶𝐸. The difference can be measured by Cramér-von Mises 

distance 𝜏𝒖
𝑃𝐶𝐸 = ∫ (𝐹𝑌𝑃𝐶𝐸

𝒖 (𝑡) − 𝐹𝑌𝑃𝐶𝐸
(𝑡))

2

ℝ
𝑑𝐹(𝑡). Moreover, the normalizing denominator of sensitivity 

measure can be simply summary of sensitivity measures for all possible conditional cumulative distribution 

functions derived from PCE (analogically to PCE based Sobol’ indices). Therefore, the normalized 

sensitivity indices based on Cramér-von Mises distance derived directly from PCE are obtained as 

 𝐶𝒖
𝑃𝐶𝐸 =

∫ (𝐹𝑌𝑃𝐶𝐸
𝒖 (𝑡)−𝐹𝑌𝑃𝐶𝐸

(𝑡))
2

ℝ
𝑑𝐹(𝑡)

∑ 𝜏𝛥
𝑃𝐶𝐸

𝛥=ℙ(𝐼)
𝛥≠𝐼

, (8) 

where 𝛥 = ℙ(𝐼)is power set of I, i.e. Δ contains all possible subsets of I. Obviously, it is possible to get 

𝐶𝒖
𝑃𝐶𝐸 of any order as in case of Sobol’ indices if and only if the PCE contains terms of desired order. 

4. Numerical example 

Several test functions with known analytical solution for moment independent importance measure were 

published by Borgonovo el al. (2011). The multiplicative model with lognormal input random variables 

was selected as a benchmark: 

 𝑌 = ∏ 𝑋𝑖
𝑎𝑖𝑛

𝑖=1 , (9) 

where Xi are independent random variables with lognormal distribution 𝐿𝑁(𝜂 ; 𝜉), where 𝜂 and 𝜉 are the 

mean value and standard deviation of ln(𝑋𝑖). The reference value is given for the mathematical model 

containing 3 input random variables (n = 3), with equal weights (a = 1) and parameters of the lognormal 

distribution η 1 and 𝝃𝑇 = [16,  4,  1].  

Surrogate model represented by PCE was created by developed software tool (Novák and Novák, 2018) 

with maximal polynomial degree p = 10 and experimental design contained 1000 samples generated by 

Latin Hypercube Sampling implemented in software FReET (Novák et al., 2014). The cardinality of 

truncated set of PCE multivariate polynomials is P = 286. The sparse PCE build up by Least Angle 

Regression (Efron et al., 2004) contained 40 terms. The accuracy of PCE measured by coefficient of 

determination is R2 = 0.98. Once the PCE was available, it was utilized as a surrogate model for same 

samples as used for experimental design (nsample = 103). The results were analysed using kernel cumulative 

estimation and sensitivity indices Cu
PCE were computed. Obtained results, reference values obtained 

analytically (Borgonovo et al., 2011) and normalized reference values by their sum (relative values) are 

compared in Tab. 1. As can be seen, proposed indices lead to well estimation of relative probability-based 

sensitivity indices as expected. 

Tab. 1: Reference solution and estimated sensitivity indices by proposed method. 

Random var. Reference δ Normalized δ (relative) Proposed indices (relative) 

X1 0.472 0.68 0.68 

X2 0.155 0.22 0.24 

X3 0.071 0.10 0.08 

5. Conclusions 
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The paper represents a study discussing the possibility of utilizing the polynomial chaos expansion for 

a distribution-based global sensitivity analysis. A practical computation of such sensitivity indices is 

typically carried out by double loop Monte Carlo approach, which is highly time consuming and in practical 

applications usually not feasible. Therefore, authors proposed herein a novel method for the estimation 

of sensitivity indices based on Cramér-von Mises distance derived directly from surrogate model in form 

of PCE. The simple analytical example was utilized for a validation of proposed method. Obtained results 

summarized in Tab. 1 show high accuracy of proposed sensitivity indices in comparison with normalized 

reference solution. The normalization is necessary due to different normalizing denominator, which is 

simplified to sum of CVM distances between original CDF and all possible conditional CDFs. Therefore, 

obtained results are relative and dependent on structure of PCE, therefore they converge to exact values 

with increasing number of PCE terms. As can be seen, the proposed methodology is able to crucially reduce 

computational demands of a moment-independent sensitivity analysis. Although, the proposed method 

works very efficiently in presented simple example, it is necessary to explore the behaviour of the method 

in more complex examples with different probability distributions. Moreover, presented approach will be 

further investigated in context of reliability-oriented sensitivity analysis (Kala, 2020), which is highly 

computationally demanding as well as distribution-based global sensitivity analysis. 
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