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Abstract: The paper deals with modeling of redundantly actuated parallel mechanisms. A calculation 

method how to obtain a quantitative information about kinematic and dynamic model accuracy is presented. 

This method is based on utilization uncertain model parameters such as geometric and dynamic parameters 

with bounded deviations. The proposed method is tested on the parallel redundantly actuated planar 4RRR 

mechanism “Crosshead”. Finally obtained results are discussed. 
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1. Introduction 

The parallel mechanisms have potential to improve stiffness, position accuracy, dynamic and payload 

over their serial counterparts (Merlet, 2000). These features can be further improved by the redundant 

actuation (Valasek et al., 2004). Howewer control of the redundantly actuated parallel mechanism suffers 

from several new control problems like the danger of emerging parasitic feedback forces and mutual 

fighting of the redundant actuators (Muller, 2010). This is especially problematic if the model 

imperfections appear. The motivation for this paper is to quantitatively describe the uncertainties 

of kinematic and dynamic model of the redundantly actuated parallel mechanisms. This is essential 

knowledge for design of a robust control method for the mechanisms (with uncertain model) and good 

control performance.  

2. Kinematic model with uncertain geometric parameters 

The mechanisms based on the parallel kinematic structure consist of a moving platform with  

an end-effector connected to the base by several kinematic chains. The kinematic chains represent closed 

kinematic loops, which leads to r geometric constraints (model) 

 𝐠(𝐪, 𝐥) = 𝟎,  (1) 

where 𝐪 is a vector of n general coordinates and 𝐥 is a vector of nominal geometric parameters.  

We assume that the real geometric parameters 𝐥 (mechanism) differ from the nominal parameters 𝐥 (model 

of the mechanism) as follows 

 𝐥 = 𝐥 + Δ𝐥, (2) 

where Δ𝐥 are bounded uncertainties of the nominal geometric parameters 𝐥. The vector of coordinates 𝐪 

should be appropriately assigned to the model of the mechanism as 𝐪 and to the (real) mechanism as 𝐪. 

Now we can write r geometric constraints for the mechanism 

 𝐠 (𝐪, 𝐥) = 𝟎. (3) 

Further we assume that only a subset 𝐪m of 𝐪 is measured and a complement 𝐪f of 𝐪 (unmeasured) 

remains unknown. To tackle this problem a computational algorithm was designed. The algorithm is 
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based on usage of measured coordinates 𝐪m during calculation of (1), where the nominal geometric 

parameters 𝐥 are extended by their uncertainties Δ𝐥. The uncertainties Δ𝐥 are selected in N iterative steps as 

Δ𝐥i (i = 1, 2, ..., N), where Δ𝐥i is a random selection from the tolerance area. Finally the obtained solutions 

𝐪fi are evaluated and a kinematic model error Δ𝐪f is determined (Fig. 1). 

 

Fig. 1: Kinematic model with geometric imperfections. 

3. Dynamic model with uncertain parameters 

The dynamic model of redundantly actuated parallel mechanism is represented by δ ordinary differential 

equations of motion (Stejskal, 1996) for δ independent coordinates (δ degree of freedom of mechanism). 

The vector of all n coordinates 𝐪 is separated into δ independent ones 𝐪2 and n- δ dependent ones 𝐪1 

 𝐆(𝐪, 𝐥, 𝐦)�̈�2 + �̅�(𝐪, �̇�, 𝐥, 𝐦)�̇�2 + �̅�(𝐪, �̇�, 𝐥, 𝐦, t) = 𝐀𝑇(𝐪, 𝐥)𝐮,  (4) 

where �̅� is a generalized mass matrix, 𝐂�̇�𝟐 represents generalized Coriolis and centrifugal forces, �̅� 

contains all remaining impressed forces (potential, friction,...), 𝐀𝑻 is a control matrix, 𝐮 is a vector of 

control forces and 𝐦 is a vector of dynamic parameters (moment of inertia, mass, position of the center of 

mass,...). 

For the real mechanism we can write the equations of motion in form 

 𝐆 (𝐪, 𝐥, 𝐦) �̈�2 + �̅� (𝐪, �̇�, 𝐥, 𝐦) �̇�2 + �̅� (𝐪, �̇�, 𝐥, 𝐦, t) = 𝐀𝑇 (𝐪, 𝐥) 𝐮.  (5) 

A difference between the dynamics of the mechanism and the model is now considered as 

 Δ�̈�2 = �̈�2 − �̈�2.  (6) 

By combining (4) and (5) with simple auxiliary substitution we can write 

 Δ�̈�2 = 𝐟 (𝐪, �̇�, 𝐥, 𝐦, t) − 𝐟(𝐪, �̇�, 𝐥, 𝐦, t) + [𝐁 (𝐪, 𝐥, 𝐦) − 𝐁(𝐪, 𝐥, 𝐦)] 𝐮.  (7) 

Finally a dynamic model error in terms Δ𝐟 and Δ𝐁 is obtained as 

 �̈�2 = 𝐟 + Δ𝐟 + [𝐁 + Δ𝐁]𝐮,  (8) 

where 

 
Δ𝐟 (𝐪, �̇�, 𝐥, 𝐦, 𝐪, �̇�, 𝐥, 𝐦, t) = 𝐟 (𝐪, �̇�, 𝐥, 𝐦, t) − 𝐟(𝐪, �̇�, 𝐥, 𝐦, t)

Δ𝐁 (𝐪, 𝐥, 𝐦, 𝐪, 𝐥, 𝐦) = 𝐁 (𝐪, 𝐥, 𝐦) − 𝐁(𝐪, 𝐥, 𝐦)
.  (9) 

These terms Δ𝐟 and Δ𝐁 are computed from the nominal parameters 𝐥 and 𝐦 with respect to the bounded 

values of their uncertainties Δ𝐥 and Δ𝐦. The computational algorithm is based on a sequential 

combination of Δ𝐥i (i = 1, 2, ..., N) and Δ𝐦j (j = 1, 2, ..., M) from the tolerance areas (Δ𝐥 and Δ𝐦). This 

means that the number of numerical iterations is now N∙M.  
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4. Example 

The proposed numerical method of evaluating of the kinematical (Δ𝐪f) and the dynamical (Δ𝐟, Δ𝐁) model 

uncertainties is studied on a planar 4RRR mechanism “Crosshead” (Fig. 2). It is selected a nominal 

trajectory as a circle centered in the center of the workspace. The geometric parameters deviations are 

Δ𝐥 = ±2 % 𝐥 (2 % nominal values) and deviations of dynamic parameters are Δ𝐦 = ±2 % 𝐦. 

The measured coordinates 𝐪m for 4RRR mechanism are [φ12, φ13, φ14]. The position of the end-effector 

[x, y, φ] is calculated by forward kinematics (nominal 𝐥). The coordinates of the end-effector are also used 

as the independent coordinates (𝐪2, 𝐪2) in the equations of motion (4) [x, y, φ] and (5) [x, y, φ]. 

 

Fig. 2: Mechanism 4RRR with kinematic model (“Crosshead”). 

The main kinematic model uncertainties (Δx, Δy) are depicted in (Fig. 3). The red line corresponds to the 

nominal values of the geometric parameters 𝐥 and the blue circles are the particular solutions for Δ𝐥i. 

 

Fig. 3: Kinematic model errors 𝛥𝒒𝑓 (𝛥𝑥,  𝛥𝑦). 

Some dynamic model uncertainties (Δf1, ΔB11) are depicted in (Fig. 4). Only the geometric parameters Δ𝐥i 

are changed here. The calculations showed a much more significant dependence on these parameters. 

 

Fig. 4: Dynamic model errors 𝛥𝒇 (𝛥𝑓1), 𝛥𝑩 (𝛥𝐵11). 
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An example of the mutual influence of the kinematic parameters Δ𝐥 and the dynamic parameters Δ𝐦 is 

depicted in (Fig. 5). Both uncertainties of these parameters are equal (Δ𝐥 = ±2 % 𝐥, Δ𝐦 = ±2 % 𝐦). The 

red line corresponds to the nominal values 𝐥 and 𝐦. The blue circles are particular selections Δ𝐥i from Δ𝐥 
and the purple points are a sequential selections Δ𝐦j from Δ𝐦.  

 

Fig. 5: Influence of the dynamic parameters 𝛥𝒎 versus the kinematic parameters 𝛥𝒍. 

Finally, all model uncertainties of 4RRR mechanism (kinematic and dynamic) are listed in (Tab. 1). 

Tab. 1: 4RRR mechanism – model uncertainties for the nominal trajectory. 

 

5.  Conclusion  

The proposed method of calculation of the model uncertainties needs generally N∙M numerical iterations. 

Fortunately the simulation results suggest a reduction to N numerical iterations in the case of a more 

significant influence of the geometric parameters. The method is generally valid for the nominal 

trajectory only. To cover the whole workspace of the mechanism it is desirable to augment this method. 

The more general applicability and the calculation complexity are main directions for the development of 

this topic. A promising approach is to use the developed issue of tolerance spaces (Stejskal, 1996). 
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