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Abstract: The frequency response of the console, discretized by three-dimensional finite elements, excited by 
a pulsating surface distributed load and mounted on a bilateral nonlinear elastic foundation, reaction forces 
of which are described by the third-degree polynomial, was investigated. The solution was performed 
in a program library for solving the problems of steady-state vibration of nonlinear dynamic systems, which is 
being developed in the MATLAB software. To describe the frequency response curve, the Crisfield’s continuous 
arc length method with the secant predictor was applied. The harmonic balance method using the Alternating 
Frequency-Time scheme was used to evaluate the non-linear forces in each iteration of the solution to solve 
the steady-state vibration response in every continuation increment. 
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1. Introduction 

In practice, modeling of mechanical systems supported on an elastic foundation is a common problem 
in the construction industry when designing building foundations, in mining when designing mine 
reinforcements or in rail transport. A mathematical description of behavior of the elastic foundation usually 
causes that the computational model of a mechanical system, although otherwise linear, becomes nonlinear. 

If there is a need to know the frequency response of such system, a necessity arises to use one of the 
continuation methods. Different variants of the arc length method are often used. Description of the 
frequency response then requires repeated solutions of the steady-state component of system displacements 
for varying excitation frequency. A possible way-out is the application of the harmonic balance method, 
which allows for the determination of steady-state response component directly, provided it has a periodic 
or quasi-periodic time course (Detroux et al., 2015).  

Frequency response investigation is closely related to the problem of stability of the vibration response. 
However, investigation of the vibration response stability is not the focus of this work. 

2. Harmonic balance method 

The equation of motion of a dynamic system with a nonlinear elastic foundation, discretized by finite 
elements, is assumed to be in the form 
 ( ) ( , )s h t t+ + = + −Mx Bx Kx p p r x&& & , (1) 

where M, B, and K are order n square matrices of mass, damping, and stiffness, respectively, x , x& , and x&&  
are vectors of displacement, velocity, and acceleration of individual mesh nodes, respectively, ( , )tr x is 
a vector of nonlinear forces via which the elastic foundation acts on the system, sp  is a vector of static 
forces and ( ) cos( )h hat tω ψ= +p p  is a vector of harmonic excitation forces, where hap  is amplitude of force, 
ω is an angular excitation frequency, t is the time and ψ is a phase shift. Using the harmonic balance method, 
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the steady-state component of the periodic response is approximated by the finite number FN  of harmonic 
terms of the Fourier series in the form 

 [ ]0
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( ) cos( ) sin( )
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k k
k

t k t k tω ω
=

= + +∑c
x c s , (2) 

where 0c , kc , and ks  are vectors of the Fourier coefficients of absolute, cosine, and sine members, 
respectively. By substituting Eq. (2) and its time derivatives into Eq. (1) and comparing the corresponding 
absolute, sine, and cosine members, the equation of motion in the frequency domain can be obtained 
 ( ) ( )ω = −A u q b u , (3) 

here 1( ) diag( , ,..., ,..., )
Fk Nω =A K A A A  is an order (2 1)Fn N +  square block diagonal matrix of dynamic 

stiffness. Vector u in Eq. (3) contains Fourier coefficients from Eq. (2) arranged as 

 T

0 1 1 F Fk k N N⎡ ⎤= ⎣ ⎦u c c s c s c sL L , (4) 

vector of linear forces q in Eq. (3) contains static and harmonic excitation forces and has the form 

 [ ]Tsin( ) cos( )s ha haψ ψ=q p p p 0 0L , (5) 

and to obtain a vector of nonlinear forces in the frequency domain b(u) in Eq. (3), Alternating Frequency-
Time Scheme (AFT) with the linear operator of direct Fourier transformation ( )ω+T  can be used (Detroux 
et al., 2015), 
 ( )ω+=b T f , (6) 

where the matrix ( )ω+T  can be obtained by calculating the Moore-Penrose pseudo-inverse of a matrix 
of the inverse Fourier transform ( )ωT  with dimensions ( )2 1Fn N× +  

 ,1 ,1 , , , ,( ) 0.5
F Fc s c k s k c N s Nω ⎡ ⎤= ⋅⎣ ⎦T 1 t t t t t tL L , (7) 

here 1 is a vector of ones and ,c kt  and ,s kt  are function value vectors of cosine and sine functions, 
respectively, calculated at N collocation points over a period of vibration. 

Elements of the nonlinear force vector in the time domain ( , )tf x  must be evaluated in each iteration of the 
solution of Eq. (3). To obtain the actual displacement vector x, the following relation applies 
 ( )ω=x T u . (8) 

3. Arc length continuation method 

When using the arc length method to solve systems of equations in the deformation variant of the finite 
element method, the controlled parameter, which in dynamics is usually the angular excitation frequency, 
becomes unknown in addition to the system displacements and one more equation is added, fixing 
the incremental step length in the space of unknown variables. 

The first step in finding a solution of the following increment in all variants of the arc length method is 
an initial estimate of the solution by a so-called predictor. The next step is an iterative refinement of the 
initial estimate of the solution by the so-called corrector. Eq. (9) can be defined between the vector 
of iterative displacements in the j-th iteration of the i-th increment δuj

i and the iterative angular excitation 
frequency δωj

i (Batoz and Dhatt, 1979) 
 δuji = x1 – δωjix2 , (4) 

where x1 and x2 are an orthogonal and parallel components of the displacement vector, respectively. To fix 
the length of the incremental step, Crisfield (1981) derived quadratic equation where one of its roots is 
an iterative angular excitation frequency δωji. Next, after calculating the iterative displacement vector δuj

i 
from Eq. (9) and updating the displacement vector and the angular excitation frequency 

 uj+1i = uji + δuji , (10a) 

 ωj+1i = ωji + δωji , (10b) 
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all that remains is to decide on either the convergence of the solution or repeated iteration, according to 
an appropriate criterion. In most cases, the criterion of permissible error of unbalanced forces is satisfactory. 

The different physical units of the displacement vector u and the angular excitation frequency ω can cause 
orders of magnitude differences between their numerical values, which in practice can lead to a significant 
increase in the number of iterations or even divergence of solution. For this reason, all physical quantities 
need to be scaled appropriately (Krack and Gross, 2019). 

4. Test problem 

The finite element mesh of the test problem with highlighted boundary conditions can be seen in Fig. 1. 
It is a bracket pressed against a nonlinear elastic foundation by a constant pressure ps at surfaces colored 
blue. At the surfaces colored red, the bracket transmits a harmonically pulsating pressure load p with 
a constant component pm, which represents a bolt connection. 

 
Fig. 1: Finite element mesh of the test problem with highlighted boundary conditions. 

The foundation is modeled as bilateral in the form of a nonlinear force constraint represented by the surface 
load r(x), which acts on the bracket perpendicular to the surface colored green and whose dependence 
on the displacement x is described by the third-degree polynomial (Frydrýšek et al., 2014). The other 
degrees of freedom of nodes on this surface have zero displacements prescribed. The geometry 
of the bracket is discretized by 2,232 three-dimensional linear hexahedral finite elements with a total 
of 3,965 nodes. The material of the bracket is considered to be linearly elastic and isotropic. Damping is 
considered proportional. The physical parameters of the model are listed in Tab. 1. 

Tab. 1: Physical parameters of the test problem. 

Parameter Symbol Value Unit 
Young’s modulus E 6.9∙1010 Pa 
Poisson’s number µ 0.33 – 
Mass density ρ 2.7∙103 kg/m3 

Mass proportional damping coefficient α 100 1/s 
Stiffness proportional damping coefficient β 5∙10-5 s 
Constant pressure ps 5∙106 Pa 

Amplitude of distributed excitation pressure pa 1∙106 Pa 

Mean value of distributed excitation pressure pm 5∙106 Pa 

Linear stiffness coefficient of foundation κ1 1∙109 N/m3 

Cubic stiffness coefficient of foundation κ3 5∙1015 N/m5 

The harmonic balance method with successively 1, 2, 4, and 8 harmonic members NF was used to solve the 
steady-state component of forced vibration in each solution increment, always discretizing the vibration 
period to N = 3(2 NF + 1) collocation points. All physical parameters of the test problem were scaled due 
to numerical solution by multiplying all their length and time dimensions by a scaling parameter s = 1∙103. 

A 

ps 

ps 
ps 

p(t)

r(x) = κ1x + κ3x3

p(t) 
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5. Results of the test problem and discussion 

The frequency response of the system was calculated at point A, see Fig. 1, at which the most significant 
response was expected. The effect of the elastic foundation on natural frequencies of the system is evident. 
The natural frequencies are now dependent on displacement and tend to increase in accordance with the 
stiffening characteristics of the foundation. In all cases, there can be several limit points identified on the 
frequency response curve, where the tangent to the curve is perpendicular to the horizontal axis. These 
points border areas of unstable response in which the vibration response of the system can be obtained 
neither by direct integration nor by measurement on the corresponding physical system. 

For 4 harmonic terms of the Fourier series, no significant change in the shape of the frequency response 
curve was observed for the excitation frequency values from 300 Hz above, compared to the case with 
8 harmonic terms. 

 
Fig. 2: Frequency response of the test problem. 

6. Conclusions 

The frequency response of a console, discretized by three-dimensional finite elements, excited by 
a pulsating pressure load, and mounted on a bilateral nonlinear elastic support, was investigated. The arc 
length continuation method was used to calculate the frequency response. The harmonic balance method 
was used to solve the steady-state vibration response at each increment of continuation.  
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