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Abstract: Stress uniformity in a specimen represents a crucial parameter for validity of impact experiment
conducted in a split Hopkinson bar. Principle of the experimental method is to measure elastic stress waves
that propagate in the bars of an experimental setup and to calculate stress to strain relations at the interfaces
with the specimen. However, standard procedure to evaluate the experiment can only be valid when stress
is distributed approximately uniformly along the specimen. As the stress wave has to propagate through the
specimen during the experiment, a time period of significantly non-uniform stress distribution is present and
a certain number of wave transits is required to achieve approximately uniform stress distribution. In this
paper, a simple analytical model assuming one-dimensional wave propagation theory, non-equal mechanical
impedance of the bars and linear elastic material model of the specimen is introduced to determine a number
of transits required to achieve uniform stress distribution in the specimen. Potential of the calculated results is
discussed in an experiment using a direct impact Hopkinson bar and a material with significant plateau in its
stress-strain response.
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1. Introduction

A split Hopkinson bar is an experimental technique for impact testing of materials. In this technique, a
specimen is placed between two bars and subjected to either high strain rate compression or tension by
direct or indirect impact. Principle of the experimental method is based on propagation of elastic stress
waves in the bars of the experimental setup. The elastic stress waves are measured and the signals are used
for evaluation of force and displacement relations at the interfaces with the specimen. As the stress wave
has to propagate through the specimen during the impact, the stress distribution along the specimen is non-
uniform. This effect is most significant at the beginning of the impact when the stress wave has to propagate
through the specimen for the first time. Then, the stress distribution converges to an approximately uniform
state with the increasing number of wave transits. The rate of the convergence depends on mechanical
impedance of either the bars and the specimen.

The stress uniformity and convergence of dynamic forces represent a topic that is highly investigated as
it affects validity of the experiments conducted using a split Hopkinson bar method (Jakkula et al., 2022).
Analytical models have been developed to analyze the stress uniformity in the specimen and the rate of
dynamic forces convergence with one of the most important model published by Yang et Shim (2005). In
this paper, an analytical model assuming the one-dimensional wave propagation theory and a conventional
split Hopkinson bar setup with the identical bars is introduced. Using the model, a required number of wave
transits to reach stress difference lower than 5 % between the input and output interface of the specimen can
be calculated. The paper also investigates an influence of the wave shape of the initial wave propagating
through the specimen, concluding that stress uniformity occurs much sooner in the case of a wave with
linear ramp (Yang et Shim, 2005). The aforementioned paper represents an important overview of the stress
increasing mechanism in the specimen during the impact and discusses validity of split Hopkinson bar
experiments.
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fila@fd.cvut.cz

109

27/28th International Conference
ENGINEERING MECHANICS 2022
Milovy, Czech Republic, May 9 –12, 2022
Paper #110, pp. 109–112, doi: 10.21495/512109



Nowadays, so-called direct impact Hopkinson bar methods have been increasingly used to investigate the
dynamic behavior of low impedance cellular materials and metamaterials during dynamic impact (Jakkula
et al., 2022). For this type of materials, the convergence of dynamic forces is a crucial factor. To achieve
better quality of the strain signals in the case of the direct impact Hopkinson bar, different mechanical
impedance of the input and the output bars is often used. Therefore, the analytical model published by Yang
et Shim (2005) was in this paper modified to account for direct impact scenario with different mechanical
impedance of the bars. The model cannot account for complex wave propagation effects in metamaterials,
however, it represents an useful tool for estimation of force convergence period and for analysis of the
experiment validity. In the paper, the results of the model are compared with the experimental results of
wave propagation in a real specimen with a significant plateau in its stress-strain curve.

2. One-dimensional wave propagation and stress uniformity model

The model is assuming the infinite linear elastic bars while the specimen is represented by a linear elastic
material model and placed between the bars. Mechanical impedance of the specimen is lower than that of
either the bar. The impact is induced by a collision of the input bar with the specimen at the initial impact
velocity. In the following list, main parameters of the model are summarized.

Nomenclature

∆t time required for the stress wave to travel
from one side of the specimen to another

ρ1 density of the output bar
ρ2 density of the input bar
ρs density of the specimen
A1 area of the output bar
A2 area of the input bar
As area of the specimen
c1 wave propagation velocity in the output bar

(
√
E1/ρ1 for ideal linear elastic material)

c2 wave propagation velocity in the input bar
(
√
E2/ρ2 for ideal linear elastic material)

cs wave propagation velocity in the output bar
(
√
Es/ρs for ideal linear elastic material)

E1 Young’s modulus of the output bar
E2 Young’s modulus of the input bar
Es Young’s modulus of the specimen
k number of wave transits through the

specimen-to-bar interface
v0 initial impact velocity of the input bar
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Fig. 1: Definition of the analytical model (left), Langrange diagram of wave propagation (right).

The definition and main parameters of the analytical model together with Lagrange diagram of wave propa-
gation during the impact are shown in Fig. 1. The model is based on the one-dimensional wave propagation
theory without wave dispersion effects. During the contact of the input bar with the specimen, a stress wave
is developed right at the interface between the specimen and the input bar. The stress wave propagates
through the specimen and is partially reflected at the interface with the output bar. The reflections of the
stress wave at the interfaces between the bars and the specimen cause an increase in stress in the specimen.
The stress distribution starts to be more uniform with the increasing number of wave transits through the
specimen. The model works with different mechanical impedance of either the bars and the specimen. Two
scenarios are taken into account: i) ideal elastic collision creating a perfect rectangular stress pulse with un-
limited duration, and ii) elastic collision creating a stress wave with linear ramp followed by a rectangular
stress pulse of unlimited duration. Lagrange diagrams showing the stress to velocity dependence during the
impact for both types of the stress wave are shown in Fig. 2.

Based on the schemes shown in Fig. 2, stress increments ∆σk corresponding to a kth transition of the stress
wave through the interface can be calculated. In the case of a rectangular pulse, the stress increments for
the first transition can be calculated using the velocity increments at the input interface dik and the output
interface dok. The velocity and stress increment for k = 1 are expressed by
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Fig. 2: Lagrange diagram showing the stress to velocity dependency during the impact for a perfectly
rectangular pulse (left) and a pulse with linear ramp period with duration of 2∆t (right).

di1 =
Asρscsv0

(A2c2ρ2 +Ascsρs)
, do1 =

Asρscs

(
v0 −

Asρscsv0
A2c2ρ2 +Asρscs

)
A1ρ1c1

, ∆σ1 =
A2c2ρ2
As

· di1. (1)

Using the analogical approach, the stress increment for arbitrary transition can be calculated. The incre-
ments have to be evaluated separately for the input (odd k) and the output (even k) interface using relations

∆σk(in) = |A2c2ρ2ρscsv0 (A2c2ρ2 −Ascsρs)
k−1

2 (A1c1ρ1 −Ascsρs)
k−1

2 · · ·

· · · (A2c2ρ2 +Ascsρs)
−k−1

2 (A1c1ρ1 +Ascsρs)
−k+1

2 |; k ∈ (1, 3, 5, · · · ), (2)

∆σk(out) = |A2c2ρ2ρscsv0 (−A2c2ρ2 +Ascsρs)
k−2

2 (A1c1ρ1 −Ascsρs)
k

2 · · ·

· · · (A2c2ρ2 +Ascsρs)
−k

2 (A1c1ρ1 +Ascsρs)
−k

2 |; k ∈ (2, 4, 6, · · · ). (3)

For the rectangular stress pulse, the actual stress in the specimen can be calculated by summing up the
individual increments while the difference between the input and the output interface is equal to the actual
stress increment. Relative stress uniformity U can be thus investigated through relations

σ =

k∑
j=1

∆σj, U =
∆σk
σ

. (4)

In case of the stress pulse with the linear ramp, the problem can be divided into three sections: i) initial linear
ramp-in phase k = 1, 2, 3, 4 (the green curve in the right diagram in Fig. 2), ii) stress wave propagation of
the initial part of the pulse (k > 4 for the blue curve in the right diagram in Fig. 2), iii) propagation of
the rectangular stress wave (k = 5 for the red curve in the right diagram in Fig. 2). For phase iii), Eq. 2
and Eq. 3 can be used when variable j is substituted for k and corresponds to j = 1 when k = 5 (see red
numbers for j in the right diagram in Fig. 2). For phase i), the following relations for stresses can be used

σ3 =
A2c2ρ2ρscsv0

2A2c2ρ2 + 2Ascsρs
, σ4 =

A2c2ρ2ρscsv0A1c1ρ1
(A2c2ρ2 +Ascsρs) (A1c1ρ1 +Ascsρs) .

(5)

For phase ii), the stress increments ∆σl can be calculated using relations (for l see blue numbers in the right
diagram in Fig. 2)

∆σl(in) = |A2c2ρ2ρscsv0
(
A1A2c1c2ρ1ρ2 +A2

sc
2
sρ

2
s

)
(A2c2ρ2 +Ascsρs)

−l−3

2 · · ·

· · · (A1c1ρ1 +Ascsρs)
−l−1

2 (A2c2ρ2 −Ascsρs)
l−1

2 (A1c1ρ1 −Ascsρs)
l−1

2 |; l ∈ (1, 3, 5, · · · ), (6)
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∆σl(out) = |ρscsv0
(
A1A2c1c2ρ1ρ2 +A2

sc
2
sρ

2
s

)
(A2c2ρ2 +Ascsρs)

−l−2

2 · · ·

· · · (A1c1ρ1 +Ascsρs)
−l−2

2 (−A2c2ρ2 +Ascsρs)
l−2

2 (A1c1ρ1 −Ascsρs)
l

2 |; l ∈ (2, 4, 6, · · · ). (7)

Then, two series with the stress increments exist, ∆σC = (0k=1, σ3,k=3,∆σj=1,k=5,∆σj=2,k=7, · · · ) for
part with the constant pulse (odd k) and ∆σL = (0k=2, σ4,k=4,∆σl=1,k=6,∆σl=2,k=8, · · · ) for the part
covering the pulse with the linear ramp (even k). Stress increments can be transformed to absolute stress
values by summing up the increments in the stress increment series (see Eq. 4). The stress uniformity U
can be then analyzed through average stress σA through relations

σA =
1

2
(σk+1 + σk) , U =

σk+1 − σk
σA

. (8)

3. Results

The model was used to estimate the number of wave transits through a specimen in case of direct im-
pact Hopkinson bar with the input bar made of aluminum alloy and the output bar made of polymethyl-
methacrylate (PMMA). The specimen was a cube of expanded polypropylene (EPP). Relative stress uni-
formity for case of the ideally rectangular pulse and the pulse with a linear ramp is shown in Fig. 3 on the
left. Note that stress uniformity was, according to the model, reached much faster in the case of the pulse
with a linear ramp (similarly to the results in (Yang et Shim, 2005)) when only 4 interface transits (approx.
40µs) were required. The measured stress time curves are shown in Fig. 3 on the right. Note that because
the material exhibited a profound plateau region, which can be, with approximation, interpreted as a change
from linear elastic to perfect plastic behavior (not increasing stress) in the model, the stress equilibrium was
reached very quickly, almost instantly after the first transition of the stress wave.
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Fig. 3: Relative stress uniformity predicted by the model (left). Stress to time experimental data (right).

4. Conclusions

The existing analytical model describing the development of stress uniformity in a specimen during the split
Hopkinson bar experiment was modified to account for a scenario with the bars with different mechanical
impedance, an arrangement often used in direct impact Hopkinson bar setups. Similarly to the already
published results, the model predicted a quick convergence of the input and output forces in a case of
an impact producing a stress wave with a linear ramp. The output of the model was compared with the
experiment showing that for materials with significant plateau region, the stress convergence develops very
quickly with a time period corresponding to a period in a pulse variant with a linear ramp.
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