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Abstract: This paper deals with algorithms for topology optimization based on deformation energy. Proper
distribution of the mass leads to an increase in the stiffness of the part while maintaining the volume. This
algorithm aims to reduce the deformation energy in the component. It is complicated to find a global minimum
for the problem. However, the local minimum can help design the shape of the part, and complex shapes can
be made by 3D printing.
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1. Introduction

Topology optimization based on deformation energy is an efficient and fast algorithm compared to other
algorithms such as a genetic algorithms. Displacements of nodes control this algorithm. The first step in
each iteration is to solve the equation:

U = K−1.F, (1)

where U is the column matrix of nodal displacements, K is global stiffness matrix and F is the column
matrix of nodal forces. After solving the equation (1) we can get the prepared score for each element. The
prepared score is derived from the equation for deformation energy. The deformation energy is multiplied
by the volume fraction of the element raised to the power of the parameter p. So Spre is calculated for all
elements from the following equation (2) (Andreassen etal, 2011):

Spre
i = wp

i .U
T
i .Ki.Ui, (2)

where wi is weight of the i-th element, Ui is vector displacement of i-th element, Ki is stiffness matrix of
i-th element. Mass distribution is controlled by Spre. The following examples highlight the procedures for
the 2D case, where w is a vector of volume fraction, and the 3D case, where w represents the coefficients
by which the stiffness matrix of the element is multiplied.

2. Beam in 2D

The first example is a beam in 2D. In this example, the mass distribution is described by the thickness of each
element. The thickness values are continuous in interval ranging from Tmin = 0.01mm to Tmax = 100mm.
And material volume is prescribed to 25% of Vmax = TmaxS, where S denotes the area of a beam. In the
first iteration, the thickness of all elements is equal to 25mm.
Volume fraction wi of i-th element is gained from:

wi =
Ti − Tmin

Tmax − Tmin
. (3)
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After w is gained, Spre is calculated from equation (2). The next modification is the distribution of scores
to neighboring elements. Scores from the element are distributed evenly through each of its nodes to
elements that are formed by at least one common node. In the original, element the score is reduced by the
corresponding distributed amount. In this case weight of distribution was set to 50 %. This distribution is
made for all elements by a matrix M. Matrix Mn×n is sparse symmetric, n is number of elements. The
Matrix M depends only on the mesh and weight of distribution. Values of the matrix are constant during
iteration.

Sfiltered = M.Spre (4)

The next step is computation of normalized score denoted Spren from filtered score Sfiltered. It is normal-
ized in the same manner as thicknesses. Then we modify the normalized score by a parameter k:

Smod
i =

{
(Spren

i )k Spren
i ≤ 0.5

1
2(2− 2Spren

i )k + 1 Spren
i > 0.5

(5)

Then the new thicknesses T are created from scores Smod
i by transformation from range 〈Smod

min ,S
mod
max〉

to range 〈Tmin, Tmax〉. After this transformation, the volume of used material may differ from volume
corresponding to chosen 25% of material. Therefore thicknesses are modified in iterations. The iteration
process consists of computing the deviation of material used and material at our disposal. Based on this
deviation value, it is decided that material will be added or removed. Elements whose values are on the
edge of the interval 〈Tmin, Tmax〉 and can not be increased or decreased are excluded from this loop. From
volume deviation through element areas, the thickness change is computed. Moreover, thickness change
is distributed on elements based on element score Smod

i . That means elements with a high score undergo
greater change than elements with a small score. After the redistribution is performed the values outside the
interval 〈Tmin, Tmax〉 are set to limiting values Tmin and Tmax correspondingly. The thickness modification
procedure is called until the deviation of the used material is smaller than the acceptable value. In this
example, the acceptable deviation was 0.5% of material volume.

After new thicknesses T were assigned, new global stiffness matrix K is recalculated and another iteration
of topology optimization is started from Eq. (1).

The iteration process is stopped after either 250 iterations or if the norm of thicknesses changes between
iterations is less than one.

Figures 2a) and 2b) show the effect of the Matrix M. The matrix M is used to prevent the formation of a
checkerboard pattern. With the matrix M, the results are smoother and more refined.

Fig. 1: Beam fixed at both ends, continuous load. Fig. 2: Mass distributions over elements
a) without use of M b) with use of M.

3. Comparison of results with respect to parameters p and k

Although the parameters p and k are constant across the iteration process, they significantly affect the result
and speed of convergence. Figure (3) shows converged mass distributions for different combinations of

142 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022



parameter values. For some combinations of parameters p and k the resulting mass distribution in a beam
improved the sum of absolute values of nodal displacements. In Figure (4) are these sums divided by
the sum of absolute values of nodal displacements for uniform mass distribution (reference beam). Not
all combinations of parameters p and k improved beam deflections. These combinations are left blank.
Especially combination of parameters p > 1.5 with k > 2 showed none improvement at all.

Fig. 3: Thickness distribution for different parameters p and k. The examples shown in this figure are
marked in red in Fig. (4).

Fig. 4: Percentage improvement in the sum of
absolute values of nodal displacements compared to
reference beam for different parameters p and k.

Fig. 5: Effect of parameters p and k on convergence.

4. Beam in 3D

This section shows the procedure for the algorithm in three dimensions. The parameter p = 2 in this case.
Spre is calculated from the equation:

Spre
i = w2

i .U
T
i .Ki.Ui, (6)
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Vector of weights of the elements w has a length equal to the number of elements. Its components can
have values of 0 or 1 only (not exactly 0, but limiting values tending towards zero to prevent matrix K
being singular). The value 1 indicates the presence of mass against 0 which is devoid of any mass. The first
iteration w contains a vector of 1s.

The score components only take values of 0 or 1, so the k parameter was not used in this case. In this case,
the score was not modified any further but only filtered by a matrix M:

S = M.Spre . (7)

Then we sorted the vector of scores S. After sorting, we obtained the position of the required number of
elements with the highest score. On these positions we change the value in the vector w to 1. The remaining
positions are equal to 0. Then a new iteration is initiated.

Results are shown on a 3D cantilever beam example fixed at one side.

Fig. 6: The first image on the left shows the initial volume of the domain. The beam is fixed at one side. Its
prescribed to use only 25% of the initial volume. The following images show results for different loadcases.

5. Conclusions

Results show the importance of the choice of parameters p and k. It is noticeable that there is not even an
improvement for some combination of the parameters. Finding the local minimum of the problem can be
helpful as a research objective. The shape calculated by the algorithm can inspire engineers. Results are
converted to .STL file and can be further modified in CAD software or 3D printed.
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