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Abstract: Ratcheting still remains as a critical process for simulations. To capture material behavior, there
is a vast of models of plasticity, from which we select rules of kinematic hardening (KH). To present whole
workflow of ratcheting predicition, the model of Multicomponent Armstrong Frederick with Threshold with
r modification (MAFTr) was selected. This model is based on concept of multicomponent backstress and
was presented by Dafalias and Feigenbaum in 2010. We implemented the MAFTr model into commercial
FE code Abaqus Standart via the UMAT interface. Implementation was verified by comparision of backstress
components evolution in FE implementation and closed form solution derived for the case of uniaxial loading.
To demonstrate the performance of UMAT subroutines, numerical examples and their computational demands
will be shown. Even the well designed model is strongly influenced by identification of parameters. As the
initial estimation, parameters will be found on the case of uniaxial monotonic loading using the closed form
solution. For the case of calibration on more complex problems, the use of FE solution is required, so the
computational demands are. Hence, effective computational approaches must be employed. The approach to
calibration procedure will also be presented.
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1. Introduction

Acumulation of plastic deformation by multiaxial ratcheting (MR) is possible cause of problems in wide
range of engineering problems. On the other hand, it is still critical process for simulations by e.g. finite
element (FE) method. Numerical simulations must be equipped with a mathematical model that reflects
permanent changes in material caused by plasticity. Welling et al. (2017) summarizes and compares phe-
nomenologicaly the effect of combining of different models of a yield surface distortion and kinematic
hardening (KH). Within this work, however, we are focused strictly on KH rules, especially on Multicom-
ponent Armstrong-Frederick with Threshold with r modification (MAFTr ) firstly presented in (Dafalias and
Feigenbaum, 2011). This model is based on concept of multicomponent backstress. For purpose of MR
prediction on more complex parts, the model is implemented via UMAT subroutines coded in FORTRAN
programming language. A comprehensive study of phenomenon that occur during the loading in plasticity
regime can be found in (Marek et al., 2022). Other models and their implementations in different codes
could be found in literature. Study of its effect on ratcheting simulation is, e.g., in (Halama, 2008).

Complex models require calibration of their parameters what leads to computational demands. Parma et al.
(2018) presents a closed form solution for the model with kinematic hardening, which allows rapid compu-
tation of target-function values within the calibration procedure for the case of uniaxial loading.

The calibration of model must be based on very precise experimental data. To fully understand mechanism
of the ratcheting occurence, behavior of the yield surface must be traced. Thus, methodology for the yield
surface tracing is highly required. An overview of experimental program is provided in (Štefan et al., 2021).
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2. MAFTr Model

The model is designed with assumptions of small strains, where the total strain comes as

εtot = εel + εpl, (1)

where εtot is the total strain tensor and εel and εpl are its elastic and plastic part, respectively. Elastic
behavior of material follows Hooke’s law σ = λItrεel + 2µεel, where σ is a stress tensor, λ and µ are
Lamé’s constants. I is the second-order unit tensor. However, to keep the notation simple, further in the
text, the Hooke’s law is used in general form σ = Cεel, where C is the fourth-order stiffness tensor. Since
only a phenomenon of kinematic hardening is adopted here, classical von Mises yield condition is took into
account as

f(σ,α) =
3

2
(s−α) : (s−α)− k2 = 0. (2)

where s is the deviatoric stress tensor, α is the backstress tensor, and k is a fixed size of the yield surface
and has value of the yield strength in pure shear. Hence, k̇ = 0. The backstress tensor is given by

∑
αi,

where αi are backstress components. The associative flowrule is adopted here as

ε̇pl = λ
∂f

∂σ
, (3)

where λ is the plastic multiplier. The MAFTr KH rule read

α̇i = λ
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where ci is the backstress rate parameter and asi affects a backstress saturation limit. n is unit norm of the
yield surface and ā is a threshold limit. Parameter ri is a weighting factor and evolves according to

ri =

√
3
2αi : αi

asi
, (5)

where index i does not subject to summation. For the case of monotonic uniaxial loading, the backstress
components might be analyticaly integrated and expressed in the closed form as

αi =
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αi =

√
2

3
(as4 ± ā)−
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where εcum is the cumulative plastic strain. Description of MAFTr model in more detail is found in (Dafalias
and Feigenbaum, 2011).
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Tab. 1: Set of parameters calibrated on
experimental data on SS 304, see (Hassan
and Kyriakides, 1994).

strain stress
controled controled

E [MPa] 198703.843 196858.3177
k [MPa] 120.65 120.65
ā [−] 33.4835 33.4835
c1 [−] 3000.0 3000.0
c2 [−] 20.1798 20.18318
c3 [−] 68.8705 70.3672
c4 [−] 111.1196 107.7976

as1 [MPa] 56.9031 58.8224
as2 [MPa] 561.4938 578.2924
as3 [MPa] 9.6809 9.4513
as4 [MPa] 73.0898 70.2192
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Fig. 1: Verification of implementation of MAFTr model.

3. Numerical implementation

Because of the need of simulations on complex geometries, the model was implemented into the FE code
of Abaqus Standard. Following the scheme presented in (Marek et al., 2015), MAFTr model was coded
in FORTRAN subroutines that are called from Abaqus via the UMAT interface. The algorithm is built on
predictor-corrector scheme with radial return onto the yield surface. The implementation was verified by
comparison with closed-form solution in Eqs. (6a) and (6b).
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Fig. 2: Simulation of ratcheting experiments on SS 304 with mean stress σm = 34 MPa, and amplitude
load σa = 186 MPa from (Hassan and Kyriakides, 1994).
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4. Model calibration

For the uniaxial case, parameters of model can be found by targeting the closed form solution (Eqs. 6a and
6b) onto the experimental data (Hassan and Kyriakides, 1994). Each run of analytical solution cost a very
short computational time, hence even global algorithm can be employed.

More complicated situation comes with need of use FE method for purpose of capturing of more complex
states, since FE method requires much more computational time for each iteration. To reduce the space
of parameters, some constraints must be found to reduce the number of iterations. As seen above, total
backstress is superposition of its components, that forms geometrical sequence. Another constraint comes
from the saturation limit when α̇ = 0, hence the value of saturation parameter is

asi =
1

αi
. (7)

The parameters of MAFTr model identified for SS 304 material experimentaly treated in (Hassan and Kyri-
akides, 1994) are shown in Tab. 1.

5. Conclusions

The MAFTr model was implemented into FE computations via UMAT interface of Abaqus Standart. This
implementation was verified by comparison with closed form solution, what is graphicaly demonstrated in
Fig. 1. Parameters of MAFTr model were found by employing a series of computational methods. At the
initial step, the closed-form solution was used to get values of model parameters. Subsequently, parameters
were verified on the case of calibration on uniaxial and multi-axial experimental data. Comparison of pre-
diction and experiment of uniaxial loading is plotted in Fig. 2. The simulation was driven by nominal values
of ratcheting experiment. However, stress levels measured during the experiment differ from these levels in
each cycle within 2% of maximum load. Thus, a difference between the prediction and experimental data
exists is found due to the imperefection of the experimental data
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