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Abstract: Often, the finite element method together with direct time integration is used for modelling of
contact-impact problems of bodies. For direct time integration, the implicit or explicit time stepping are gen-
erally employed. It is well known that the time step size in explicit time integration is limited by the stability
limit. Further, the trouble comes with the task of impact of bodies with different critical time step sizes for each
body in contact. In this case, this numerical strategy based on explicit time stepping with the same time step
size for both bodies is not effective and is not accurate due to the dispersion behaviour and spurious stress
oscillations. For that reason, a numerical methodology, which allows independent time stepping for each body
with its time step size, is needed to develop. In this paper, we introduce the localized variant of the bipenalty
method in contact-impact problems with the governing equations derived based on the Hamilton’s principle.
The localized bipenalty method is applied into the impact problems of bars as an one-dimensional problem.
The definition of localized gaps is presented and applied into the full concept of the localized bipenalty method.

Keywords: Contact-impact problems, Explicit time integration, Bipenalty formulation, Localized La-
grange multipliers, Stability analysis.

1. Introduction

In finite element modelling of contact-impact problems, the penalty method is generally used, see (Wrig-
gers, 2011). The classical penalty method for enforcing the impenetrability condition in contact mechanics
produces the sensitivity of critical time step size on penalty stiffness parameter – with increasing the stiff-
ness penalty parameter the critical time step size decreases. This behaviour is avoided by the bipenalty
formulation, where the mass penalty term for enforcing of the gap rate for persistency condition is activated
(González et al., 2021). By this way, the critical time step size is not chanced with a proper choice of the
ratio of penalty parameters. Also, the stabilization of the spurious oscillations of contact forces can be
realized with the predictor-corrector method, see (González et al., 2021; Kolman et al., 2021).

The partitioned analysis for impact problems based on localized Lagrange multipliers (Park et al., 2000)
allows for total separation/splitting of governing equations of motion. Thus, the corresponding equations of
motion with given boundary and initial conditions can be integrated with independent time step sizes. In this
contribution, we suggest the combination of the bipenalty formulation of contact-impact problems together
with the localized variant of Lagrange multipliers for correct solution of impact-contact problem. The gov-
erning equations for one-dimensional case is presented and discussed together with potential asynchronous
time integration scheme.
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2. Strong formulation of contact initial-boundary value problem in 1D

The one-dimensional contact-impact problem for linear isotropic homogeneous bars is governed by the
following constrained initial-boundary value problem (IBVP):

E(x)u′′ + b = ρ(x)ü in I × T

u(x, 0) = u0(x) in Ī

u̇(x, 0) = v0(x) in Ī

u(x, t) = ū(x) on Γu

Eu′(x, t) = σ̄(x) on Γσ

g(t) ≤ 0 on Γc × T

pc ≥ 0 on Γc × T

g(t)pc = 0 on Γc × T

ġ(t)pc = 0 on Γc × T

(1)

where I =
⋃
i Ii = (x`i , x

r
i ); i = 1, 2 is the union of intervals of spatial points xi ∈ Ii ⊂ R defining the

contacting bodies, and T = (0, tend); tend ∈ R is the time interval. For one-bar contact problem with a
rigid obstacle only one body is considered and I = I1. In the first Eq. (1), which governs the balance
of the linear momentum, u(x, t) is the unknown displacement function, E is Young’s elasticity modulus,
and ρ is the mass density. b is the volume force per volume. Note that for the sake of simplicity, the
second partial derivative with respect to x is denoted by double prime, (•)′′, whereas the second partial
derivative with respect to t by superimposed dots, ¨(•). The governing equation (1)1 is complemented with
the initial conditions (1)2,3, Dirichlet and Neumann boundary conditions (1)4,5, and contact conditions
(1)6−8, where g(t) is the gap function defined in the following section and pc(t) is the contact pressure. The
last condition in (1)9 is termed the persistency condition, see (Wriggers, 2011). In the initial conditions,
u0(x) is the initial displacement function and v0(x) is the initial velocity function; both prescribed at time
t = 0. Similarly for the boundary conditions, ū(x) on Γu is the displacement function and σ̄(x) in Γσ is the
traction function; both constant in time. Γu and Γσ are sets of boundary points where displacements and
stresses are prescribed. Γb marks the boundary of domain of interest. Γc is the contact surface.

3. Definition of contact gap and localized gaps

At the first step, we have to define the gap function. The gap function g(t) for the two-bar contact is defined
as (Wriggers, 2011)

g(t) = −
[
u(x`1, t)− u(xr

2, t) + g0

]
= ZTu + g0 (2)

where the geometrical meaning is depicted in Fig. 1.

fb2 b1

Fig. 1: Definition of contact gap and localized contact gaps for the problem of bars.

For the localized version of the bipenalty formulation we assume that the total gap is given by addition of the
gaps from the boundary points of bars related to the contact frame and it is given by the frame displacement
uf (t) as g = g1 + g2 where the localized gap function g1 for body 1 is defined in 1D case as

g1(xb1, xf ) = −[xb1 − xf ]nf1 + g01 = −[Xb1 + ub1 − (Xf + uf )]nf1 + g01. (3)
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In the same kinematical sense, we define gap function g2 for body 2 as

g2(xb2, xf ) = −[xf − xb2]nf2 + g02 = −[Xf + uf − (Xb2 + ub2)]nf2 + g02 (4)

where ub1 and ub2 are the displacements of the points of the boundaries of the body 1 a 2, resp., nf1 is the
normal vector at point xf to the body 1 and nf2 is the normal vector at point xf to the body 2. Properties of
the frame normal vector is as nf2 = −nf1 .

4. Weak form of contact-impact problem via localized bipenalty method - Hamilton’s principle

We introduce the weak form of the contact-impact problems via the bipenalty method, for details see
(González et al., 2021). The Lagrangian functional, L(u, u̇) of the problem of interest corresponding to
Eq. (1) is given as

Lp (u, u̇, ub, u̇b, uf , u̇f ) = T (u̇)− (U (u)−W (u)) +Wb (u, ub, λ) +Wc (ub, u̇b, uf , u̇f ) , (5)

where

T (u̇) =

∫
I

1

2
ρAu̇2 dx, U (u) =

∫
I

1

2
EAu′

2
dx, W (u) =

∫
I
ubAdx+

∑
x∈Γσ

uAσ̄ (6)

are the kinetic energy T , the strain energy U , and the work of external forcesW , respectively. Note, that
the cross-section area of the bars is marked by A. The boundary term related to the method of Lagrange
multipliers (Park et al., 2000) is given as

Wb(u, ub, λ) =

∫
Γb

λ(u− ub) dΓ (7)

and the interface bipenalty term in the localized variant of bipenalty method related to the contact-impact
problem yields

Wc (ub, u̇b, uf , u̇f ) = −
∫

Γc

1

2
εs1A〈g1〉2dΓ−

∫
Γc

1

2
εs2A〈g2〉2dΓ+

∫
Γc

1

2
εm1A〈ġ1〉2dΓ+

∫
Γc

1

2
εm2A〈ġ2〉2dΓ,

(8)

where the operator 〈•〉 are the so-called Macaulay’s brackets defined as 〈•〉 = |•|+•
2 and εs1, εs2, εm1 and

εm2 mark the localized stiffness and mass penalty parameters.

5. Explicit matrix form for the interface problem

The stationary solution of the weak form is then given in the matrix form for the 1D impact problems of
two bars problem as follows

M1 0 B1 0 0 0 0
0 M2 0 B2 0 0 0

BT
1 0 0 0 −Lb1 0 0

0 BT
2 0 0 0 −Lb2 0

0 0 −LTb1 0 MP
bb1 0 MP

bf1

0 0 0 −LTb2 0 MP
bb2 MP

bf2

0 0 0 0 MPT
bf1 MPT

bf2 MP
ff





ü1

ü2

λ1

λ2

üb1
üb2
üf


+



K1 0 0 0 0 0 0
0 K2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 KP

bb1 0 KP
bf1

0 0 0 0 0 KP
bb2 KP

bf2

0 0 0 0 KPT
bf1 KPT

bf2 KP
ff





u1

u2

λ1

λ2

ub1
ub2
uf


=



f ext1
f ext2
0
0

f0b1

f0b2

f0f


(9)
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From (9), the accelerations of the frame is explicitly described in the form as

üf = (MP )−1[f̃f −MPT
bf1(M̂P

1 )−1f̃b1 −MPT
bf2(M̂P

2 )−1f̃b2

−MPT
bf1(M̂P

1 )−1LTb1
(
BT

1 M−1
1 B1

)−1
BT

1
¨̃u1 −MPT

bf2(M̂P
2 )−1LTb2

(
BT

2 M−1
2 B2

)−1
BT

2
¨̃u2] (10)

with the penalized mass matrix

MP = MP
ff −MPT

bf1(M̂P
1 )−1MP

bf1 −MPT
bf2(M̂P

2 )−1MP
bf2. (11)

From that, the boundary acceleration vector üb1 holds in explicit form

üb1 =
[
LTb1

(
BT

1 M−1
1 B1

)−1
Lb1 + MP

bb1

]−1 (
f̃b1 −MP

bf1üf + LTb1
(
BT

1 M−1
1 B1

)−1
BT

1
¨̃u1

)
(12)

Similarly, for the boundary acceleration vector üb2

üb2 =
[
LTb2

(
BT

2 M−1
2 B2

)−1
Lb2 + MP

bb2

]−1 (
f̃b2 −MP

bf2üf + LTb2
(
BT

2 M−1
2 B2

)−1
BT

2
¨̃u2

)
(13)

From that we can compute the Lagrange multipliers

λ1 =
(
BT

1 M−1
1 B1

)−1 (
BT

1
¨̃u1 − Lb1üb1

)
, λ2 =

(
BT

2 M−1
2 B2

)−1 (
BT

2
¨̃u2 − Lb2üb2

)
(14)

and the acceleration of bodies can be computed as follows

ü1 = M−1
1

(
f̃1 −B1λ1

)
= ¨̃u1 −M−1

1 B1λ1, ü2 = M−1
2

(
f̃2 −B2λ2

)
= ¨̃u2 −M−1

2 B2λ2 (15)

with the predictions of the acceleration are ¨̃u1 = M−1
1 f̃1, ¨̃u2 = M−1

2 f̃2 and the related forces then

f̃1 = f ext1 −K1u1, f̃2 = f ext2 −K2u2, f̃f = f0f −KPT
bf1ub1 −KPT

bf2ub2 −KP
ffuf (16)

f̃b1 = f0b1 −KP
bb1ub1 −KP

bf1uf , f̃b2 = f0b2 −KP
bb2ub2 −KP

bf2uf (17)

where the matrices KP
xy and MP

xy have the meaning of the penalized stiffness and mass matrices.

6. Conclusions

The governing equations of the localized variant of the bipenalty method in contact-impact problems for
the case of one-dimensional bar problems have been presented. Also, the explicit forms of the equations of
motion of the interface based on the localized gaps have been found. These equations of motion together
with kinematical equations give the full system for partitioned analysis with the asynchronous time step-
ping with time step sizes of bodies with non-integer ratios. The presented approach can help to accurate
modelling of Split-Hopkinson pressure bar experiments.
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