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Abstract: The paper deals with a possibility of using the properties of first integrals for the construction of
Lyapunov function for the analysis of a dynamic system stability in the stochastic domain. It points out certain
characteristics of first integrals resulting in the necessity to introduce additional constraints to assure the
principal properties of the Lyapunov function. A number of these constraints has their physical interpretation
with reference to system stability. The advantage of this method constructing the Lyapunov function consists in
the fact that the Lyapunov function itself contains information on the examined system and, consequently, it is
not merely a positive definite function without any relation to the actual case concerned. The presented theory
finds application in many dynamical systems. The procedure is illustrated by a nonlinear SDOF example.
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1. Introduction

Dynamic stability of systems in which random components of system parameters or excitations cannot be
neglected, represent a natural extension of exclusively deterministic cases. Among the various methods
applicable for the stability analysis of such systems, the important position belongs to the second Lyapunov
method extended for cases with random excitation. Especially in the stochastic domain is this method
considered to provide a better understanding of the overall properties of the system structure in terms of
stability of a given type. It also helps with an analyzis of the broader context of system parameters and their
random perturbations. However, if it is possible to formulate the necessary and sufficient conditions for the
existence of the Lyapunov function (LF) for the appropriate type of stability of the system, LF can serve as
a powerful tool not only for theoretical analysis, but also for direct practical applications. This particular
research is motivated by the concept of the structural health monitoring of a bridge by indirect measurement
during the crossing of a special measuring vehicle, (Bayer and Urushadze, 2021), because the data obtained
from such measurements usually contain a strong random component.

Probably the first use of Lyapunov function adapted to stochastic stability problems was published by
Bertram and Sarachik (1959). In subsequent studies by Tikhonov and Mironov (1977) or Bolotin (1984)
is the total time derivative of a positive definite function, which is considered as Lyapunov function in
deterministic problems, replaced in the stochastic domain by the adjoint Fokker-Planck (FP) operator:

L{λ(t,u)} =
∂λ(t,u)

∂t
+

n∑
i=1

∂λ(t,u)

∂ui
κi +

1

2

n∑
i,j=1

∂2λ(t,u)

∂ui∂uj
κij , (1)

where κi, κij are the drift and diffusion coefficients of the n-dimensional Markov process, m depends on
the system structure:

κi =

m∑
k=1

Aik(t) · fik(u) +
1

2

m∑
k,l=1

n∑
p=1

∂fik(u)

∂up
fip(u) · siklp , κij =

m∑
k,l=1

fik(u)fjl(u) · sikjl . (2)
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Equations (1,2) relate to the original stochastic system, the stochastic stability of which is assessed:

u̇i =

m∑
k−1

(Aik(t) + wik(t))fik(u); u(t0) = u0. (3)

where λ(t,u)—candidate for the LF, Aik(t)—nominal values of system coefficients, wik(t)—Gaussian
white noise of cross-intensity sikjl, and fik(u)—continuous non-decreasing functions.

Let λ(t,u) be positive definite and continuous together with its first derivative with respect to time and the
second derivative with respect to space. If ψ(t,u) = L{λ(t,u)} is negative in the relevant domain Ω and
vanish or does not exist in the origin, λ(t,u) can be considered as the Lyapunov function. Obviously, for
any ||u0|| 6= 0 function λ(t,u) decreases for t → ∞ and approaches zero simultaneously in all spatial
coordinates u. This means that the trivial solution of the system Eq. (3) is stable in terms of probability.

It turns out that the Lyapunov function can be constructed on the basis of the first integrals of the cor-
responding deterministic system. The simplest example of this approach is the use of the overall energy
balance, which is also the most common first integral of the system. Such a procedure is presented by
Chetayev (1962) for the case of assessing stability in the deterministic area. This paper attempts to use the
first integrals to construct a Lyapunov function that could be used to stochastically evaluate the stability of
one class of systems with polynomial nonlinearities and Gaussian parametric and additive white noise.

2. Single-Degree-of-Freedom example system

Fig. 1: Outline of an SDOF system
subdued to a cross air stream.

For the sake of simplicity, an example motivated by an single-
degree-of-freedom aeroelastic model will be presented here, on
which it will be possible to clearly show the construction of the LF.
In this model, the movement of a prismatic body perpendicularly
to an air flow results from an aeroelastic interaction of a streaming
medium and a moving body, e.g., (Novák and Davenport, 1970),

M · ü(t) + Fdam(u, u̇) + C · u(t) = 0 , (4)

where M,C are the mass and stiffness matrices, respectively, and
Fdam(u, u̇) denotes the nonlinear damping force. Excitation enters
the equation as an action of the non-linear damping. A change in
the lifting force due to the variation in the angle of attack can cause self-excitation. Random air pressure
fluctuations have the same character and can be considered as a perturbation of the damping coefficient.
The most frequently used choices of damping result in the Rayleigh or the van der Pol type equation:

(i) The Rayleigh type Fdam(u, u̇) = 2M
(
ωb +

1
2δ

2u̇2(t)
)
u̇(t) :

u̇1 = u2 ;

u̇2 = (2ωb − δ2u22 + w2) · u2 − (ω2
0 + w1) · u1

(5)

(ii) The van der Pol type Fdam(u, u̇) = 2M
(
ωb +

1
2γ

2u2(t)
)
u̇(t) :

u̇1 = u2 ;

u̇2 = (2ωb − γ2u21 + w2) · u2 − (ω2
0 + w1) · u1

(6)

where the phase space u = {u1 = u, u2 = u̇} has been introduced. The linear and nonlinear damping
coefficients ωb, γ, δ comprise structural damping and aeroleastic self-exciting effects. Parametric noises
w1, w2 with cross-intensities sk,l affect eigenfrequency and damping, respectively. The systems (5,6) have
the first integrals of the total energy type and the corresponding Lyapunov functions can have the form:

(i) λ(t,u) =
1

2
u22 +

1

2
ω2
0u

2
1 (7)

(ii) λ(t,u) =
1

2
(u2 −G(u1))2 +

1

2
ω2
0u

2
1 (8)

where G(u1) =

∫ u1

0

(
2ωb − γ2ζ2

)
dζ = 2ωbu1 −

1

3
γ2u31 ; (9)
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Equations (7), (8) represent positive definite functions. With respect to Eqs. (2) and (3), the diffusion
coefficients κi, κij and the derivatives of the function λ(t,u) according to phase variables have the form of:

(i)


κ1 = u2 , κ2 = (2ωb − δ2 · u22) · u2 − ω2

0 · u1
κ11 = κ12 = κ21 = 0 , κ22 = u21s11 + u1u2(s12 + s21) + u22s22

∂u1
λ(t,u) = ω2

0u1 , ∂u2
λ(t,u) = u2 , ∂u2

2
λ(t,u) = 1

(10)

(ii)


κ1 = u2 , κ2 = (2ωb − γ2 · u21) · u2 − ω2

0 · u1
κ11 = κ12 = κ21 = 0 , κ22 = u21s11 + u1u2(s12 + s21) + u22s22

∂u1
λ(t,u) = (u2 + 2ωbu1 − 1/3 γ2u31)(2ωb − γ2u21) + ω2

0u1 ,

∂u2
λ(t,u) = (u2 + 2ωbu1 − 1/3 γ2u31) , ∂u2

2
λ(t,u) = 1

(11)

where n = 2,m = 3, f12 = f22 = u2, f21 = u1, f23 = u32 or u21u2, w21 = −w1, w22 = w2; sikjl = skl for
i = 2 or j = 2, and sikjl = 0 when any from the following holds: i = 1, j = 1, k = 3 or l = 3.

A summation of these partial expressions yields: L{λ(t,u)}:

(i) L{λ(t,u)} = ψ(t,u) = u22(2ωb − δ2u22) + u21s11 + u1u2(s12 + s21) + u22s22 (12)

(ii) ψ(t,u) = ω2
0u

2
1(2ωb −

1

3
γ2u21) + (u21s11 + u1u2(s12 + s21) + u22s22) (13)

Let us deal with the case, when the noises w1, w2 are independent, i.e. when s12 = s21 = 0. The basic
structure of Eqs (12), (13) reveals that in comparison to the deterministic case, both noises have destabilizing
effects. Equation ψ(t,u) = 0 can be used for the estimation of the boundaries of stability of the initial
system. The system comprises only symmetrical independent parametric noises and no other excitations,
as a result of which its response will be symmetrical, too. Thus, processes u1, u2 can be assumed centered.

If the process u1 can be considered at least approximately a Gaussian, D4
11 = 3(D2

11)
2 where D2

11 and D4
11

are central second and fourth moments of u1, respectively. This approximation is probably permissible with
regard to the fact that the characteristic of the systems Eqs (5), (6) is linear. In such a case, see (Náprstek
and Fischer, 1999), it can be shown that the estimated stability boundary for D2

11 > 0, D2
22 has the form of

(i) −3δ2

s11
(D2

22)
2 +

(2ωb + s22)

s11
D2

22 +D2
11 = 0 (14)

(ii) −ω
2
0γ

2

s22
· (D2

11)
2 +

(2ω2
0ωb + s11)

s22
D2

11 +D2
22 = 0 (15)

The curves Eqs (14), (15) are parabolas passing through the origin, the direction of their axes is (i) horizontal
and (ii) vertical, respectively. The stable state results from the negative value of the function ψ(t,u), i.e.
the area between the respective parabola and (i) positive vertical axis of D22, and (ii) positive horizontal
axis of D2

11 respectively. This can give rise to three different cases. If the apex of the parabola is below the
axis D2

11 or to the left of the axis D2
22, the stability area extends to the origin. That holds, if:

(i) 2ωb + s22 < 0 ; (ii) 2ω2
0ωb + s11 < 0 (16)

If the apex of the parabola coincides with the origin, i.e. the inequalities Eqs (16) become equations, the
system is stable in a neighborhood of the origin. The negative or at least zero values of ψ(t,u) can be
attained without any of the quantities D2

11, D
2
22 having to be positive.

If any of the expressions Eqs (16) is positive, the apex of the respective parabola is above the axis of D2
11

or to the right of the axis of D2
22. The system will acquire secondary stability due to the nonlinear term and

will vibrate in a certain band of the width different from zero. The domain of stability adjoins to the vertical
axis of D2

22 or to the horizontal axis of D2
11 beginning with the point

(i) D2
22 =

2ωb + s22
3δ2

; (ii) D2
11 >

2ω2
0ωb + s11
ω2
0γ

2
(17)
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Fig. 2: (a) Stability domains of the van der Pol system (flow speed:1 — sub-critical, 2 — critical, 3 — super-
critical);(b,c) Comparison of stability domains of van der Pol (parabola with vertical axis) and Rayleigh
(parabola with horizontal axis) systems for sub-critical (b) or super-critical (c) flow speed, respectively.

If the air flow velocity or the value of ωb is so low that the stability areas in both cases extend to the origin,
the system is stable and the perturbations of displacements due to parametric noises do not differ practically.
The behavior of the system is not visibly influenced by the selection of the damping model.

In supercritical regime an instability domain common to both models arises. The response structure in
these cases depends considerably on the damping model. With increasing air flow velocity, however, we
move more or less along the first quadrant diagonal. Starting with a certain velocity we arrive again at
the stability domain determined by nonlinear part in the damping force. This domain is common to both
models characterized once again by the dropping dependence on the type of nonlinear damping force model.
Similar tendencies can be observed also for TDOF models, see, e.g., (Nabergoj and Tondl, 1994).

3. Conclusion

It is coming to light that the Lyapunov function constructed on the basis of first integrals has better proper-
ties than that constructed by other methods. In other words, if such LF can be constructed, it allows its user
to obtain a broad overview of the nature of the system in terms of its global and local stability. For linear
systems, the application of such LF yields results corresponding with the application of Routh-Hurwitz cri-
teria and represents, consequently, the necessary and sufficient conditions. In nonlinear cases it is possible
to base the investigation on the properties of the deterministic system, as the influence of parametric noises
can be separated distinctly. This type of analysis has been shown using a simple SDOF example. The
presented results showed a detailed insight into the stability properties of the investigated problem. The
extension of the approach in the case of moving loads of the beam by periodic force and the stability of
the respective response is straightforward. However, subsequent analysis of the stochastic properties of the
measured data to study the properties of the supporting structure will require further effort.
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