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Abstract: The paper develops numerical tools for dynamic analysis of elastic media. Particularly, the hybrid
Trefftz method is applied in order to approximate the solution of the underlying differential equation expressed
in the frequency domain. The main objective of this work is to implement the hybrid Trefftz method for numeri-
cal analysis of 2D elastodynamic media. MATLAB software is used as the programming language for the code
development. To validate the implemented method, the results are compared to the analytical solutions.
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1. Introduction

The problem of dynamically loaded media is frequently investigated, especially in the fields of civil engi-
neering and geotechnics. Under certain simplifications, such physical behaviour can be described by a set
of coupled partial differential equations expressed in terms of an unknown displacement field depending
on the time and space coordinates. For most of the practical cases this mathematical problem cannot be
solved analytically and therefore numerical methods need to be applied to approximate the solution. By
transferring all the field equations into the frequency domain, the original problem in time and space is di-
vided into a number of subproblems, which are however formulated in terms of space coordinates only. The
associated space solution is subsequently approximated. Various methods, such as FEM, were developed to
tackle such task, however, for higher excitation frequencies a fine domain discretization is required, which
results in computationally expensive simulation. Alternative options for such analysis are Trefftz methods,
in which the unknown field is approximated using special shape functions which are required to satisfy
the governing differential equations. In the paper the hybrid Trefftz method is investigated, in which the
boundary traction field is additionally approximated on the boundary of the individual elements. The work
of (Freitas, 1997) and (Moldovan, 2008) motivated to investigate the main characteristics of this method
and its differences to other numerical strategies by applying it to an elastodynamic structure.

2. Problem Description

The behaviour of a loaded body represented by domain V with boundary Γ can be described using three
main sets of equations, which are equilibrium equations (1), kinematic equations (2) and material law (3):

Dσ + b = ρü in V, (1)

ε = DTu in V, (2)
σ = kε in V. (3)
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Vector u collects individual displacement components, vector b contains body forces and ρ denotes the
mass density. Vectors σ and ε consist of components of the stress and strain tensors respectively and matrix
D is a differential operator matrix. As the material is considered as linear elastic and isotropic, the material
matrix k is constant and two Lamé coefficients λ and µ are sufficient for its definition. To pose a valid
problem, displacement and traction boundary conditions are introduced:

u = uΓ on Γu , t = tΓ on Γσ, (4)

uΓ and tΓ denote the vectors of prescribed displacement and traction components. Symbols Γu and Γσ
represent the Dirichlet and Neumann parts of the boundary Γ. The boundary traction vector is calculated
based on the boundary equilibrium t = Nσ, where matrix N collects components of the outward unit
normal. In the scope of this paper the loading is assumed to be a periodic function in time, therefore only
the periodic solution is of interest and no information regarding the initial state of the structure needs to be
provided. Combining the previously mentioned equations (1) to (3), the governing differential equation

DkDTu− ρü+ b = 0 in V (5)

is formed. It expresses a system of second order partial differential equations in time and space and is
referred to as the Lamé equation.

In this work the frequency domain analysis method is applied in order to simplify the solution procedure of
the previously derived equation. With the help of the Fourier series expansion, all the mentioned fields and
equations can be transformed into the frequency domain and hence the problem depending on space and
time coordinates is transferred into a number of sub problems which depend on the space coordinates only.
The spectral form of the Lamé equation then reads

DkDTuk + ω2
kρuk + bk = 0. (6)

Vector uk denotes the space part of the displacement vector obtained for harmonically oscillating loading
with circular frequency ωk and amplitude bk. The complete solution u is then recovered by superposition
of the individual solutions for all considered circular frequencies ωk. The solution procedure of eq. (6), and
hence the acquisition of the space component uk for a single circular frequency ωk, is the main objective
of this work and will be described in the next section.

3. Hybrid Trefftz Method

Similarly to FEM, also Trefftz methods discretize the domain into a number of finite elements, where a
certain field is approximated by shape functions multiplied by unknown coefficients. In the case of Trefftz
methods, the basis functions are restricted to satisfy the homogeneous part of the governing differential
equation. Regarding the hybrid Trefftz method, the individual functions may violate the prescribed bound-
ary conditions, hence a finite number of such basis functions is combined so that the boundary values of
the resulting function get closer to the prescribed boundary conditions. The adjective hybrid indicates that
more than one field is approximated simultaneously and independently. In the scope of this paper, the
displacement field is approximated in the domain and the boundary traction field is approximated on the
Dirichlet boundary. The purpose of the boundary field approximation is to enforce the boundary conditions
and the continuity between adjacent elements. For simplicity, 2D plane strain situation is assumed for the
upcoming derivations.

The displacement field uk ≈ UX + u0 is approximated inside the element domain V e. The displacement
basis collected in matrix U is restricted to satisfy the homogeneous part of the spectral Lamé equation (6)
and vector u0 is constructed as the particular solution of eq. (6). The strain field εk ≈ DTUX+DTu0 =
EX + ε0 is restricted to directly satisfy the kinematic equations, therefore E is not an independent basis.
To construct the displacement and strain bases U and E, it is necessary to solve the homogeneous part of
the spectral Lamé equation. By the application of the Helmholtz decomposition

uk = ∇Φp + ε ·∇Φs, (7)

with ∇ and ε being gradient and Levi-Civita symbol, eq. (6) can be reformulated in terms of unknown
irrotational potential Φp and a solenoidal potential Φs and hence decoupled into two independent Helmholtz
equations. Their solution is subsequently sought in form

Φα,n = Wn(kαr) exp(inθ), (8)
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where r and θ are polar coordinates, n is an integer, α ∈ {p, s} and kα stands for the wavenumber. It can
be shown that function Wn must be chosen as a solution of the Bessel equation, which can be the Bessel
function of the first or second kind or Hankel function of the first or second kind. For each order n, two
basis functions can be derived combining eqs. (7) and (8), one associated to the dialatational part ∇Φp,n

and the other to the shear part ε ·∇Φs,n. To construct the approximation matrix U , orders −N < n < N
are considered, therefore the basis contains 2(2N + 1) terms with N being the chosen maximum order.

The second field to be approximated contains the tractions tk ≈ Zp on the Dirichlet element boundary Γeu,
which contains not only the external part of boundary, where the displacements are prescribed, but also the
inter-element edges, where displacement continuity needs to be enforced. Matrix Z collects the boundary
approximation basis and p stands for the vector of unknown coefficients. In this work the Chebyshev
polynomials of type I up to maximum order M are adopted for the basis Z. As the individual traction
components are approximated independently, the matrix Z consists of 2(M + 1) terms.

The finite element system of equations is derived using the weighted residual method. Firstly, the equilib-
rium equations are weakly imposed while the displacement approximation basis is used as the weighting
matrix. On the other hand, the kinematic equations, the material law and the traction boundary condition are
fulfilled locally. Combining and manipulating the previously mentioned equations, the first matrix equation
of the complete system of algebraic equations[

D −B
−B̂T 0

] [
X
p

]
=

[
tΓ − tΓ0

uΓ0
− uΓ

]
(9)

is derived. The definitions of the individual matrices and vectors read

D =

∫
Γe
ÛTNkE dΓ, B =

∫
Γeu

ÛTZ dΓ, tΓ =

∫
Γeσ

ÛT tΓ dΓ,

tΓ0
=

∫
Γe
ÛTNkε0 dΓ, uΓ =

∫
Γeu

ZTuΓ dΓ, uΓ0
=

∫
Γeu

ZTu0 dΓ,

(10)

where (̂·) denotes a complex conjugate. The second set of the finite element system of equations (9) is
formed by weak imposition of the Dirichlet boundary condition; the traction basis Z is chosen as the
weighting matrix. Note that the system was derived for a single element. When multiple elements are
connected, also the inter-element continuity conditions need to be imposed, which is performed in a similar
way as the enforcement of the Dirichlet boundary condition. Due to the special choice of the basis functions,
all the system matrices are constructed based on the integration along the element boundary, which allows
to use elements of arbitrary shape.

4. Example: Comparison to Analytical Solution

The basis functions contained in the displacement approximation matrix U can directly be considered as
the analytical solution to which the approximated one is compared. The Hankel function of the first kind
and order n = 4 was chosen as the function W and only the part derived from the solenoidal potential
is considered. Applying the kinematic and material equations, the associated stress field is derived and
subsequently the boundary tractions can be recovered. When the problem is modelled using the hybrid
Trefftz method, these tractions are applied as the boundary condition. The difference between average
potential and kinetic energies E associated to the deformed state was chosen for assessment of the quality
of the approximated results. Its approximation obtained using the hybrid Trefftz method is denoted byEFE .

The structure is analysed using two finite element meshes, which discretize the domain into two and four
elements. For each mesh, simulations for various orders N and M , which determine the number of terms
contained in the displacement and traction bases, are performed. The Bessel function of the first kind is
chosen as the function W appearing in the definition of the individual basis functions. The domain shape
was chosen as the quarter of a hollow circle. The convergence plots are visualized in Figs. 1 and 2. For each
traction basis order M , the number of terms contained in the displacement basis is increased. Therefore the
individual lines illustrate an increase in the number of terms contained in the domain displacement basis
while the length of the traction basis is fixed. The total number of degrees of freedom is plotted on the
x-axis while the ratio EFE/E is plotted on the y-axis. In Fig. 1, the results for the two-element mesh are
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Fig. 1: Convergence: 2 elements
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Fig. 2: Convergence: 4 elements

visualized, maximum orders M of the boundary traction basis from 7 to 13 and orders N of the domain
basis from 10 to 21 were considered. Results for the four-element mesh are shown in Fig. 2. The boundary
traction basis of maximum orders M from 4 to 8 was selected while the domain displacement basis orders
vary from 9 to 15. From both figures it can be seen that for most of the considered lengths of the boundary
traction basis the approximated results tend towards the reference solution, when the number of terms in
the domain approximation basis is increased. However, for the two-element mesh when M = 7 and four-
element mesh when M = 4 this statement does not hold any more and the results converge to a value
which is significantly different compared to the analytically evaluated one. The reason for such mismatch
is the fact that the true inter-element tractions cannot be captured sufficiently well by the polynomial of
the mentioned orders and instead of refining the domain displacement basis the number of terms in the
traction basis needs to be increased. As can be seen, the total number of degrees of freedom required for
a certain accuracy is larger for the finer mesh, which motivates to model the analysed domain using only a
few elements but bases with many terms. A drawback of such approach are the numerical difficulties which
result in a badly conditioned system of equations.

5. Conclusions

Due to the fact that the approximation functions reflect the mechanical features of the modelled phe-
nomenon, the domain can be discretized into only a few elements. To obtain more accurate results, the
number of terms included in the domain basis is increased instead of refining the element mesh. Such
p-refinement technique proves to produce equation systems with a relatively low number of degrees of free-
dom compared to conventional methods. Moreover, the resulting matrices appearing in the final system of
equations are constructed by integration along the element boundary. As a consequence, elements of arbi-
trary shape and number of edges may be used. From the obtained results it can be concluded that the quality
of the approximated solution is determined by the number of basis functions included in both the domain
displacement as well as in the boundary traction basis. The maximum order of the polynomial contained in
the traction basis needs to be high enough so that the shape of the true inter-element and boundary traction
fields is well captured. If this condition is not fulfilled, even for an increasing number of terms contained in
the domain displacement basis the approximated displacement solution does not converge to the true one.
Overall, the hybrid Trefftz method represents an efficient solution procedure and offers some significant ad-
vantages compared to other deterministic approaches. Nevertheless, one has to be aware of the limitations
of its application, since for domains of complex shapes the preferable efficiency is compromised.
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