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Abstract: More accurate models to describe the response of particulate polymers and other similar materials,
such as concrete, at failure are demanded. Therefore, this paper briefly describes the influence of underlying
structure in numerical modelling. The standard distribution of particles in the model is briefly described. This
paper discusses the possibility of using Voronoi non-circular particles in the LDPM. A semilinear method to
describe non-spherical particles in space is discussed and investigated in terms of computational complexity.
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1. Introduction

The requirements for optimal building design and rehabilitation are strongly pronounced in the nowadays
industry. As one of the most widely used materials, concrete is still under investigation (Ghobarah, 2001;
Wen, 2001). Different polymers are typically utilized for rehabilitation, and thus, their properties and
interaction with concrete are also widely studied (Abali et al., 2020). From the engineering point of view,
the accurate response prediction of these types of materials is one of the essential elements and can be
decisive for an efficient and safe design. In this paper, we focus on the Lattice Discrete Particle Model
(LDPM) (Cusatis et al., 2011b,a) to capture the particle distribution, size and material properties together
with the ability to simulate thermosets on the scale of application.

2. Structure

Since the LDPM is a discrete model, the underlying particles distribution, size, shape, and orientation may
crucially influence the prediction (Yan et al., 2021). Composite materials such as particulate polymers or
concrete can be seen as heterogeneous materials composed of grains of different shapes and sizes (frac-
tions) bonded together by the matrix phase. However, still the most common approach is to neglect the
heterogeneity and consider the materials as homogeneous. The material can be then simulated using the
standard finite element method.

A more complex approach is to simulate the material structure as in the LDPM (Cusatis et al., 2011b). The
simplest method of this approach is to generate spherical particles with a radius according to the grain size
curve and place them randomly in the volume. The example of this structure is shown in Fig.1b. Note
that the images of the structures are rendered in 2D to make the subtle differences between the structures
apparent. The generated particles are used to form tetrahedrons (the most primitive polytope in space)
using Delaunai triangulation, as shown in Fig.1a. The tetrahedrons are then split into parts that belong
to each grain. All these parts of the tetrahedrons belonging to a single grain are then combined to form
the resulting particle defined by the complex polyhedron (Cusatis et al., 2011b). However, these particles
have the disadvantages of being difficult to construct and of being restricted to spherical particles only. At
the same time, inappropriate placement of the particles can create undesirable fragments in the material
structure.
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(a) Delaunay triangulation (b) LDPM cells (c) Voronoi cells

Fig. 1: Comparison of LDPM and Voronoi cells for set of circular particles.

(a) 6 points per circle (b) 16 points per circle (c) 50 points per circle

Fig. 2: Voronoi tessellation formed from circular particles.

3. Voronoi tessellations

In this paper, we explore the possibility of using tessellation of Voronoi cells for the LDPM model. Voronoi
cells are particles where their boundary represents half of the distance between the particles from which
tessellation occurs (Du et al., 1999). The boundaries are represented by straight lines for points in 2D and
by planes for points in 3D. For more complex particles, Voronoi cells become more complicated. In the
plane, the simplest planar particles are circles. In the case of congruent radii, the boundary is a straight line.
If the radii are different, the boundary becomes a curve. If we consider more complex particles, such as
ellipses, the boundary becomes even more complicated.

The computation of analytic boundaries with a high number of particles is a challenging process. For
this reason, we attempt to take advantage of the higher computing power that is available today and try
to simplify the process. We use the idea of generating points on the particle boundary. In this case, the
boundaries are represented by a large number of straight lines (Schaller et al., 2013). The composition of
these lines results in a semilinear cell boundary. This boundary resembles an analytically exact curve given
a sufficient number of points. This has the advantage of being easily algorithmizable, and using today’s
hardware power, the process is noticeably faster. It also gives us the ability to create particles of arbitrary
shapes that will even more closely match the real structure of the material. Once the particles have been
created, the equilibrium equations will then be generated in the same way as for classical LDPM model
structure generation.

We used the Matlab software (MATLAB, 2021) for the calculation. Our algorithm first creates the particles
according to the given parameters. This is followed by the generation of points at the boundary of each
particle. Then, a dense network of Voronoi cells between the points is computed. This is followed by
the composition of the complex Voronoi cells according to the initial particle to generate the resulting
tessellation of the material structure.

406 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022



(a) 12 points per edge (b) 25 points per edge (c) 44 points per edge

Fig. 3: Voronoi tessellation formed from elliptical particles.

(a) Circular particles (b) Elliptical particles

Fig. 4: Convergence of the relative volume for a set of ten particles as a function of the number of points
representing the particle boundary.

Fig. 2a shows a tessellation of circular particles where the edge is represented by 6 points. At first glance,
it is clear that the shape of the boundary involves large inaccuracies that affect the content and length of the
cell boundary. Fig. 2b shows the same set of particles, which are represented by 16 points in the calculation.
In this case, the boundaries between cells are without significant fragments. Small fragments are visible
for close particles or when there is a significant difference in radii. In Fig. 2c, particles represented by 50
points are visible. In this case, the boundaries are fragment-free, and as the amount of points on the particle
edge is increased, the variation in boundary length and cell volume is negligible.

Voronoi 3a shows a set of elliptical particles with an edge represented by 12 points. Compared to the
circular particles, the fragments are much more distinct despite the higher number of points due to the
greater curvature of the cell boundary. Voronoi 3b shows ellipses represented by 25 points. In this example,
the boundary is absent of distinct fragments, but minor noise is still evident near the particles. Voronoi
3c with ellipses represented by 44 points shows that at higher counts the boundary is clear of significant
fragments.

Voronoi 4 shows the rate of convergence of the cell volume as a function of the number of points repre-
senting the edge of the particle. In the case of convergence of the circular particles 4a, a volume deviation
of max 1% is reached at approximately 16 points per particle. For elliptic particles, Fig. 4b, which have
boundaries with more curvature, a 1% deviation occurs at up to 25 points per particle. As the number of
points increases, the volumetric variation only decreases.
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4. Conclusion

In this paper, we discussed the use of Voronoi cells for non-circular particle shapes used in the LDPM.
The planar structures composed of circular particles and elliptical particles are shown. Preliminary results
show that Voronoi particles could represent grains in polymer particles or concrete, represented by rotating
ellipsoids or arbitrary asymmetric particles. The convergence rate, which represents the accuracy of the
Voronoi cells with respect to their exact boundary, was briefly discussed. Future work will need to validate
the use of Voronoi particles with the LDPM model and quantify the differences between these approaches.
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assemblies of aspherical particles. Philosophical Magazine, 93, pp. 3993–4017.

Wen, Y. (2001) Reliability and performance-based design 73. Structural Safety, 23, 4, pp. 407–428.
Yan, Z., Ge, H., Guo, S., Xiaoyong, W., and Zhao, G. (2021) Flexural strength test and meso-mechanical evolution

behavior of cement concrete based on discrete element method. Computational particle mechanics, pp. 1–15.

408 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022


