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Abstract: Biomechanical computational models used more and more in medical research as well as in clinical 

applications need mathematical description of soft tissues with their very complex mechanical behaviour. They  

show large deformations with stress softening during cyclic loading, being moreover time-dependent due to 

their viscoelasticity, anisotropic due to fibrous structure and dependent on tissue excitation in case of muscular 

tissues, including smooth muscle cells in arterial walls. They are capable to adapt to the acting load (tissue 

remodelation) and to self-repair (healing) in case of damage or failure (rupture of fibres, etc.) This paper deals 

with constitutive description of passive elastic response of soft tissues to the acting load and with the ways, 

how the anisotropic structure of the tissue can be reflected. For this purpose, the spatial arrangement of fibres 
in the tissue needs to be detected and mathematically described. Lack of data on fibre arrangement in soft 

tissues and their interpatient variability is a major limiting factor for anisotropic constitutive description of 

soft tissues. Some problems related to transformation of results of mechanical tests and histological analyses 

of arterial tissues into parameters applicable in constitutive models are addressed as well. 
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1. Introduction 

Biomechanical computational models gain importance not only in medical research but also in clinical 

applications, especially in orthopaedy and other surgical branches, e.g. cardio-vascular. Although hard 

tissues (bones) may be also anisotropic due to their trabecular structure, in most situations they remain 
linear elastic and thus can be described (with exception of time development of their properties) in a similar 

manner like technical composite materials. In contrast, soft tissues exhibit large deformations and thus are 

more difficult for constitutive description, for which hyperelastic models are used most frequently. In 
addition, their time dependent behaviour can be described using visco-hyperelastic models (see Fig. 1) or 

models of tissue remodelation (healing), and another category of models considers active response of some 

tissues (muscle contraction) or continuum damage mechanics approaches for stress softening effects. 

Although the time dependence of soft tissue properties may become significant (for instance, aorta rupture 
under extremely high strain rates at car accidents), this paper remains limited to hyperelastic behaviour of 

soft tissues, denoted often as pseudo-elastic. Collagen as dominant protein in human body with its fibrous 

structure may induce high anisotropy of soft tissues in dependence on fibre arrangement – especially on 
their directional distribution. Both isotropic and anisotropic hyperelastic models are used for their 

constitutive description, for instance in computational models predicting rupture of arterial aneurysms or 

evaluating vulnerability of atheromas. Their overview, analysis and comparison are presented in this paper.   
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Fig. 1: Example of visco-hyperelastic behavior of elastomer in uniaxial compression test and its simulation 

using Bergström-Boyce model. The load-unload process is interrupted four times for 30 s to enable stress 
relaxation (from Bergström & Boyce 1998).  

2. Mechanical properties of soft tissues and their testing 

Similar to elastomers, uniaxial tension tests are sometimes not sufficient for description of multiaxial 

response of soft tissues, even if realized in several directions to cover the tissue anisotropy. In addition, 

biaxial tests are recommended to be applied especially with tissues being under biaxial load under 
physiological conditions (arterial walls, different membranes etc.). Moreover, triaxial load related closely 

to tissue (in)compressibility represents a specific issue. 

2.1. Uniaxial testing  

Stress-strain responses of soft tissues such as skin, arterial wall, diaphragm, fascia, endo- epi- and 

pericardium, etc. are highly non-linear exhibiting a progressive strain stiffening (see fig. 2c). It is generally 

acknowledged that the higher stiffness of arterial wall under supraphysiological pressure (and strain) is 

caused by straightening of wavy collagen fibres. Thus the response under low strains (in most of the 
physiological range of loads) is dominated by less oriented tissue components (elastin and also smooth 

muscle cells in some arteries); the straightened and very stiff collagen fibres dominate under higher 

(supraphysiological) loads and their orientation induces more significant anisotropy (see fig. 2). As biaxial 
tests require larger specimens which are mostly not available at arteries, uniaxial tension tests in different 

directions represent basic approach in mechanical testing of arteries. It is worth to mention that from a 

loading curve under constant strain rate we cannot detect any non-elastic effects; for large arteries, 
(pseudo)hyperelasticity is mostly assumed but several preconditioning cycles are applied before testing to 

saturate the stress-strain response and minimize the non-elastic effects.  

 

Fig. 2: Arterial specimens and their uniaxial (a) and biaxial (b) testing (Lisický et al. 2021). Stretch-stress 
response of arterial wall in biaxial testing (c).  

a) c) 
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2.2. Biaxial testing  

As arterial samples are not large enough for cruciform specimens, two basic types of biaxial tests may be 

applied: biaxial tests with planar specimens or inflation of tubular specimens. Biaxial tests of planar 
specimens require unconstrained transversal contraction of the specimen, thus the load is applied via a set 

of either hooks or narrow clamps (see fig. 2b). Loads in both directions can be set independently and can 

be displacement controlled, force controlled or strain controlled. It is worth to mention that equibiaxial 

strain does not correspond to equibiaxial stress and vice versa. Inflation of tubular specimens is more 
physiological but applies more strict assumptions on homogeneity of stresses, as well as of the tissue 

specimen itself. Impact of fibre straightening on tissue stiffness is illustrated in Fig. 3. 

 

Fig. 3: Straightening of circumferential collagen fibres and their contribution to tissue stiffness in different 

parts of the response in the inflation test of a tubular specimen. Modified from Singh et al. (2015). 

2.3. Testing of tissue compressibility 

As many constitutive models assume tissue 

incompressibility this issue is decisive for their 

formulation and suitable choice. 
Compressibility of arterial tissue has been 

investigated for decades with contradictory 

results. This may be due to different testing 
methods, size dependence and other factors. 

Skácel & Burša (2022) investigated the arterial 

tissue compressibility together with its 

anisotropy under uniaxial tension; they 
exploited accurate (under optical microscope) 

3D evaluation of all the 3 normal strains 

components and all Poisson’s ratios. The results 
show tissue volumetric compressibility in the 

order of lower units of percents and uniquely 

reject auxetic behaviour of the tissue (i.e. 

transversal out-of-plane expansion under 
uniaxial extension). These results falsify 

predictions of some frequently used anisotropic 

constitutive models based on collagen fibre 
structure as analysed below in detail. 

Fig. 4: Uniaxial stress-strain responses of some 100 

specimens of human carotid arteries (Lisický et al. 

2021a). 
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2.4. Dispersion of experimental data 

Large dispersion and variability of all the properties is a typical feature of living, especially human tissues. 

Thus the way of obtaining average (mean population) responses (stress-strain curves) is not only very 
important but also rather challenging. Especially transformation of the responses into constants of a 

phenomenological model and calculation of their average values is rather risky (although frequently done) 

and may bring false results because these constants have no clear physical meaning and each response may 

be approximated using different combinations of constants of the chosen model. Moreover, it is rather usual 
with living tissues that the standard deviation is comparable in magnitude with the mean, even for material 

parameters being positive by principle (a.o., Young modulus, tensile strength). Whenever this is the case, 

statistical analysis of the data must include tests of data normality. Fig. 4 illustrates the difference between 
mean and median values of stress-strain curves of human carotid arteries. Here the asymmetric distributions 

of strains calculated for the chosen stress levels show evidently a large dispersion and should be represented 

as mean and interquartile range (Lisický et al. 2021b).  

3. Constitutive models of soft tissues 

Similarly to elastomers, isotropic hyperelastic models of soft tissues are mostly formulated on the basis of 
strain energy density function (SEDF) expressed by means of invariants of some (mostly Cauchy-Green) 

deformation tensor. All models below are presented as incompressible. As all the needed mechanical tests 

can seldom be realized with biological tissues and more complex phenomenological models show a poor 
predictive capability, Yeoh polynomial model is preferred among them:  
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where I1 is the first invariant of Cauchy-Green deformation tensor and ci0 [Pa] are material parameters, 
specifically c10 is related to initial modulus of elasticity and the others to the strain stiffening. 

Orthotropic models exploiting exponential forms of SEDF expressed by means of individual components 

of deformation tensor in material coordinates are called Fung-type models. For instance, Chuong & Fung 

(1983) used the following formulation: 

 

and c[Pa], ci [-] are material parameters; εi are components of Green-Lagrange strain tensor. 

3.1. Structure-based models  

First structure based constitutive models of soft tissues considering the orientation of collagen fibres were 

introduced in 1980s. The microfibre model (Lanir 1983) integrates contributions of all structural 

components to the strain energy of a fibre composite and introduces some additional (pseudo)invariants of 
the deformation tensor for this purpose. Applications of this model were rare and are still rather challenging 

and time consuming even with advanced computers because it requires additional numerical integration 

(over all spatial directions) to be done at each integration point of the material. However, simplifications 

introduced in and after 2000 and huge expansion of computer capabilities enabled their broad application.  

Deviatoric SEDF Wdev is decomposed into the isotropic contribution of matrix Wiso and anisotropic 

contribution of fibres Waniso . 

   BACWCWW anisoisodev ,,  

For the isotropic part Wiso , any suitable hyperelastic model can be used (neo-Hooke, Yeoh, ….), while for 
the anisotropic part Waniso  exponential models are introduced most frequently. A and B represent here the 

so called „structural tensors“ related to directions of fibres. They were introduced in the HGO model 

(Holzapfel et al., 2000) on the basis of an assumption on two perfectly aligned helical fibre families, being 

mechanically equivalent and symmetric with respect to the circumferential direction of the artery. This 
model exploits only two of the additional invariants representing stretches of both fibre families and is 

formulated as follows: 
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Here μ[Pa] is shear modulus of the isotropic part (matrix), k1[Pa], k2[-]  

are material parameters and I4, I6 are (pseudo)invariants of the right 
Cauchy-Green deformation tensor and A, B structural tensors. The fibres 

are considered to bear the load under extension only. 

As collagen fibre directions are not perfectly aligned in soft tissues, 
Gasser et al (2006) introduced dispersion of fibre directions into this 

model through the so called generalized structural tensor (GST). This 

allowed to avoid angular integration (AI) of SEDF contributions 
(throughout all the fibre directions). Although this GST approach cannot 

sufficiently approximate the AI approach (as demonstrated in Skacel & 

Bursa 2014), it is computationally much more efficient and hence 

relatively popular. The SEDF of this GOH model is as follows: 
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where κ represents a dispersion 

parameter of the fibres; 𝜿 = 𝟏/𝟑 holds for isotropic distribution of 

fibres while 𝜿 = 𝟎 for perfectly aligned fibres; such value reduces 

the GOH formula into the HGO model. The introduction of 

structure tensor causes that all fibres of a family are considered to 
correspond to its dominant direction. Consequently, the inaccuracy 

of the model increases with increasing dispersion of fibre 

directions in each family. 

Although the above two models consider collagen fibre 

orientation, they still describe the strain stiffening of fibres 

phenomenologically using an exponential function. Martufi & 
Gasser (2011) considered the background of this effect and 

introduced it into the Lanir type of model (AI approach). 

Following other scientists in the field, they considered triangular 

distribution of stochastically defined waviness λ of fibres (ratio of 
contour length of a fibre to the distance between its endpoints - see 

fig. 6). The resulting progressivity of fibre response is then 

induced by gradual straightening of single fibrils with individual 
waviness, as the additional structural parameter of the model.  

3.2. Contradictions of models with experiments 

Unfortunately, the above models still suffer from a lack of experimental data on collagen fibre arrangement. 
If mechanical data are fitted without histological information (with the parameters of collagen fibre 

directions being calibrated from mechanical response), they give either nearly diagonal fibre arrangement 

(HGO model) or nearly isotropic fibre distribution (GOH model with =1/3), both being in contradiction 

to histology (Fischer et al., 2023). In contrast, if histological data on fibre arrangement are given, the models 

are not capable to reach an acceptable fit of mechanical data. The explanation can be found in fig. 2(c) 
where the responses in both directions show large strain stiffening but with circumferential orientation of 

collagen fibres (found most frequently in arteries) there is no tissue component to stiffen in the axial 

direction (neo-Hookean model of the matrix is without any stiffening).  To overcome this discrepancy, 

four-fibre family model was introduced (Ferruzzi et al., 2011) by adding two more fibre families 
(circumferential and axial perfectly aligned fibres) to the HGO model with two original helical families. 

This model enables the needed strain stiffening in both axial and circumferential directions but has no 

histological substantiation. Similar results can be reached using combination of Yeoh model with GOH 

Fig. 5: Two families of 

dispersed fibres as 

assumed in the GOH model 

(Gasser et al. 2006). 

Fig. 6: Distribution of waviness λ 
within a fibre family (from Martufi 

& Gasser, 2011). 
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model ensuring the isotropic strain stiffening and having all fibres close to the circumferential direction in 

accordance with histological results (Fischer et al., 2023). 

Another limitation of these models is in their non-realistic prediction of transversal strains under uniaxial 
tension (Skácel & Burša, 2019). This effect is illustrated in 

Fig. 7 showing a specimen of arterial wall with two helical 

fibre families under uniaxial tension. Collagen fibres are 

stiffer by orders than the other components of arterial wall, 
thus they can be considered as rigid. The specimen is 

elongated by uniaxial stress σ, which is enabled only by 

rotation of the diagonal fibres resulting in negative 
transversal strain (in-plane component), potentially even 

larger in magnitude than the longitudinal strain. To 

compensate this in-plane contraction and simultaneously 
to keep the incompressibility of the matrix, the model 

induces large out-of-plane expansion resulting in a 

negative Poisson’s ratio of the model. However, this 

behaviour was rejected by experiments of real arterial 
tissue (Skácel & Burša, 2022); that represents, in addition 

to histological results, another refutation of existence of 

two helical fibre families in arterial wall. 

3.3. Mathematical comparison of helical and wavy fibres in arteries  

 

Fig. 8: The top row shows idealized arrangement of collagen fibres in arterial wall with two helical fibre 

families (of straight/waveless fibres) under ±45° (a) and one perfectly aligned family of wavy fibres with 

the same maximum angle of ±45° (b). The bottom row shows (in violet colour) the corresponding 
histograms with (c) being for helical fibres; they are completed (in yellow) with additional fibre families 

under the angles of ±40°and ±50°. The histogram of wavy fibres (d) reminds of real histograms of collagen 

fibres in arteries; evidently under uniaxial load, the two peaks of the histogram would get closer to the 

direction of load indicated by arrows in fig.(b). Modified from (Kratochvíl 2020). 

In the mathematical models presented below we assume a perfectly compliant matrix and (similarly to 

Holzapfel et al. 2000; Gasser et al. 2006) zero bending stiffness of the fibres, thus they cannot bear any 

Fig. 7: Schematic demonstration of fibres 

rotation induced by tensile stresses; 
dashed and solid lines represent 

undeformed and deformed body Ωo and Ω, 

respectively.  

c) d) 
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load if not being straight and oriented in the direction of load. The models with two helical fibre families 

(a) and with one family of wavy fibres (b) are presented in Fig.8 for the same fibre angle of ±45°. Both of 

them give symmetric histograms, which would be hardly distinguishable if a significant dispersion existed., 
For the model (a) with straight and helical fibre families, however, the limit specimen stretch for fibre 

rotation towards the direction of load is λ0 = 1/cosα, i.e. λ0=1.41 for α=±45°. In contrast, for the single 

family of sinusoidal fibres with the same local angles, the numerical integration along the curve length 

gives the limit stretch value for fibre straightness only λ0=1.22 (see Kratochvíl 2020). The related 
histograms are completed with fibre angles of 40° and 50°, obtained typically when fitting the GOH or 

HGO models to experimental data without histological information on fibre directions (Haskett et al., 2010; 

Fischer et al., 2023; Schriefl et al., 2012). The limit stretches λ0 for the angles of 40° and 50° are 1.31 and 
1.56 for helical fibres and 1.16 and 1.29 for wavy fibres, respectively. If recalculated into engineering 

strains ε0 = λ0-1, the values for fibres arranged in two helical fibre families are approximately two times 

higher than for wavy fibres with the same maximum local angle. This is due the fact that only an effective 
portion (~50%) of contour length of wavy fibres undergoes reorientation during stretching of (globally 

aligned) fibres, in contrast to straight helical fibres, which undergo re-orientation in their whole length.  

The models (a) and (b) in fig. 8 enable also some considerations on the tissue behaviour under biaxial 

extension. Under equibiaxial stretch, no fibre rotation is initiated in the model (a), the fibres are elongated 
(and bearing load) from the very beginning and there is no reason for a strain stiffening of their response.  

In contrast, the response of the model (b) is similar to uniaxial tension and the impact of the extension 

transversal to the global orientation of fibres depends on the affinity of deformation between the fibres and 
matrix. This type of behaviour corresponds much better to the real behaviour of arterial tissue under 

equibiaxial load (see fig. 2c). 

4. Arrangement of collagen fibres 

Fibre waviness, however, complicates critically evaluation of fibre directions. In fact, nearly all methods 

used for detection of collagen fibre directions investigate their local directions, while the constitutive 
models require their global orientation in the undeformed state of the tissue. As shown in fig. 8, for 

sinusoidal fibres the most frequent local directions are those most different from the global fibre direction. 

This discrepancy could be overcome by detection of fibre directions under load inducing their straightening. 
It was shown experimentally that the concentration parameters of fibre distribution increase with increasing 

fibre extension even in cases when their global re-orientation is avoided. Turčanová et al. (2023) have 

shown that the increase in the concentration parameter of fibre directions is similar under equibiaxial load 
and uniaxial load acting in the dominant fibre direction, while under perpendicular load it does not increase 

significantly. All this shows that fibre directions should be investigated together with their waviness. There 

are two approaches how to do it.  

First, the fibre directions can be evaluated under load (see fig. 9). In this way, the fibre straightening ensures 
higher concentration parameter evaluated from their local orientations (see fig. 10 a)) and the fibres global 

orientation then tend to unimodal distribution. Under uniaxial load, however, the fibres rotate significantly 

and the evaluated dominant direction may differ from that in the unloaded state, required for the constitutive 
models (which may be, however, simply eliminated by pull-back operation of the resulting distribution). In 

contrast, no fibre rotation should occur under equibiaxial load (see fig. 9) but it is true under equibiaxal 

strain only, which does not correspond to equibiaxial stress. However, equibiaxal state of strain is more 

difficult to be reached because it requires in-time strain evaluation for the strain controlled feedback while 
equibiaxial tension tests are mostly stress controlled or displacement controlled and the strains are evaluated 

afterwards.  

The second approach is applicable after having detected the contours of individual fibres (fibre tracking), 
for instance using confocal microscopy (Turčanová, 2023). Then the global fibre direction is given by 

vector connecting its endpoints. Unfortunately, this procedure has not been automated yet (for collagen 

fibres) and requires manual detection of each fibre. Thus the correct evaluation of parameters applicable in 
the constitutive models represents the most important challenge in this field.  
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Fig. 9: Histograms of collagen fibre directions in porcine aorta under different biaxial loads. Raw 
histograms from all the evaluated sections are depicted as dots, the individual slices are ordered from the 

outer to the inner surface. The von Mises distribution functions (unimodal or bimodal) are presented as 

solid lines common for adventitia (orange) and media (purple) layers. 0° is circumferential direction, TM 

and TA mean media and adventitia layers, respectively. 

 

Fig. 10: (a) Dependence of the concentration parameter b on the radial stretch λr. Circles represent 

experimental results and are approximated with straight lines. Orange and violet colours represent two 
different experiments and the black line is their average. (b) Histogram of fibre straightness. From 

(Turčanová 2023). 

 

a) b) 
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5. Conclusion 

Anisotropy of soft tissues may be significant. The advanced structure-based constitutive models enable us 

its description but under the following limitations: 

 Knowledge on tissue structure is needed, especially on distribution of collagen fibre directions in 
the unloaded state.  

 The models require knowledge of global directions of collagen fibres, which may be significantly 

different from the local directions detected by most of the applicable methods due to fibre waviness. 

Bimodal distributions of local fibre directions, may be misinterpreted as two fibre families while 

representing one family of wavy fibres. 

 As the concentration parameters increase with extension of fibres and their decreasing waviness, 
the global fibre directions can be advantageously evaluated under uniaxial or biaxial extension. 

Nevertheless, they need to be recalculated back to the undeformed conditions needed for the 

constitutive models.  

 Although distribution of fibre waviness is detectable using some of the up-to-date methods, there 
are hardly any attempts to transform these results into applicable constitutive parameters.  

 Although anisotropy is often significant at individual human tissues, the inter-patient variability 

may be large and make the anisotropy statistically insignificant for mean population models.  

 Comprehensive mechanical and histological testing can hardly be carried out non-invasively and 

without it the advantages of structure based constitutive models may get lost and isotropic models 
may become more effective. 
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