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Abstract: Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-
port of riverbed sediments towards the magma flow; from the deposition of catalytic material inside particulate
matter filters in automotive exhaust gas aftertreatment towards the slurry transport in dredging operations. In
this contribution, we focus on the particle-resolved direct numerical simulation (PR-DNS) of the particle-laden
flow. Such a simulation combines the standard Eulerian approach to computational fluid dynamics (CFD)
with inclusion of particles via a variant of the immersed boundary method (IBM) and tracking of the particles
movement using a discrete element method (DEM). Provided the used DEM allows for collisions of arbitrarily
shaped particles, PR-DNS is based (almost) entirely on first principles, and as such it is a truly high-fidelity
model. The downside of PR-DNS is its immense computational cost. In this work, we focus on three possibil-
ities of alleviating the computational cost of PR-DNS: (i) replacing PR-DNS by PR-LES or PR-RANS, while
the latter requires combining IBM with wall functions; (ii) improving efficiency of DEM contact solution via
adaptively refined virtual mesh; and (iii) developing a method of model order reduction specifically tailored to
PR-DNS of particle-laden flows.
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1. Introduction

Processes with a solid phase dispersed in a fluid are omnipresent in both nature and industry. Just a few
examples of their industrial applications include the deposition of a catalytic material inside the monolithic
structure of particulate matter filters in automotive exhaust gas aftertreatment (Blažek et al., 2021; Isoz
et al., 2022), sedimentation (Qi et al., 2008), or fluidization (Kang et al., 2019). Consequently, there exists
a wide range of methods for their simulations with resolution ranging from the particle-resolved direct
numerical simulation (PR-DNS) (Isoz et al., 2022), towards simplified two-fluid models in which both the
fluid and the solid phase are treated as interpenetrating continua and their mutual interaction is modeled
using (semi-)empirical closures (Municchi et al., 2019; Chauchat et al., 2017).

While the two-fluid models allow for large-scale simulations, the advantage of PR-DNS lies in its high
fidelity. The high-fidelity of PR-DNS stems from the fact that the flow is solved with standard methods
of computational fluid dynamics (CFD) with particles included into the fluid domain using a variant of the
immersed boundary method, see, e.g., (Peskin, 2002) and (Mittal and Iaccarino, 2005). Consequently, no
empirical closure is needed to compute the fluid forces acting on submerged particles. Furthermore, the
complete flow field is simulated and no phenomenological turbulence models are required.

In PR-DNS, the particles themsevels are accounted for via the discrete element method (DEM), the de-
scription of which may be found in (Luding, 2008), as such, PR-DNS is a representative of the so-called
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CFD-DEM methods. Provided that the used DEM variant allows for treatment of arbitrarily shaped par-
ticles, i.e., fully resolves the particles geometry, the only approximations in PR-DNS originates in the
assumption of particles rigidity and approximate handling of the solid-solid contact. For reviews of recent
progress in DEM and CFD-DEM for non-spherical particles, the reader is refered to (Feng, 2023; Ma et al.,
2022), respectively.

In the present work, we will concern ourselves with our custom PR-DNS variant (Isoz et al., 2022), in which
the flow is solved using the standard segregated approach by Patankar and Spalding (1972) and Demirdzic
et al. (1993), albeit modified similarly as in Blais et al. (2016). The solid phase is included in the flow via
a hybrid fictitious domain-immersed boundary method (Municchi and Radl, 2017, 2018). The movement
of particles is simulated utilizing the soft variant of DEM, that is, a variant allowing for overlaps between
otherwise rigid solids and scaling the contact forces and torques according to the overlap magnitude. The
specific used DEM is applicable to simulations of movement of arbitrarily-shaped solids and the used
contact model is based on the work of Chen (2012), where the particle-particle overlap is measured via the
overlap volume. Finally, adopting the terminology of Ma et al. (2022) for classification of DEM methods
based on the approach to the particle surface definition; in our case, the particle shape is defined via a
polyhedron-based model, which should be the most accurate (and most costly) from the currently available
approaches. The complete model is implemented in the open-source C++ library OpenFOAM (OpenCFD,
2007) and is freely available from (Kotouč Šourek et al., 2023).

2. Simulation framework fundamentals

Ωs(t = ts)

Γsf(t = ts)
Ωs(t = tf)

Γsf(t = tf)

Γ
Ω

Ωf(t) = Ω\Ωs(t)

Fig. 1: Solution domain Ω and its division into Ωs, Ωf and Γsf at two different times t = ts and t = tf .
Trajectory of Ωs in Ω is indicated by a dash-dotted line.

Let Ω ⊂ R3 be a connected open domain with boundary Γ = ∂Ω. Let Ω be split as Ω = Ωs∪Ωf∪Γsf , where
Ωs represents the part occupied by a solid phase, Ωf the part occupied by a fluid and Γsf = ∂Ωs = ∂Ωf

is the solid-fluid interface. When the solids present in Ω are moving, Ωs, Ωf and Γsf depend on time.
Furthermore, for the case of a solid phase dispersed in Ω, Ωs and Ωsf may not be connected. The situation
is illustrated in Fig. 1.

In Ω, we aim to solve momentum and mass balances for both the fluid and solid phase. Furthermore, as
stated in Introduction, the fluid phase is solved within the standard CFD framework, while the solid phase
movement is computed using DEM, and the two approaches are linked via an IBM variant.

Consequently, the complete Ω = Ωs∪Ωf∪Γsf is taken into account for the fluid flow solution, and assuming
an incompressible flow of a Newtonian fluid, the fluid flow governing equations are,

M(u) = −∇p̃+ fib
∇ · u = 0

, M(u) =
∂u

∂t
+∇ · (u⊗ u)−∇ · (ν∇u) (1)

where u is the fluid velocity, ν the kinematic viscosity, and p̃ the kinematic pressure. The forcing term fib
is calculated so that it generates a fictitious representation of Ωs within Ω. This approach is known as a
hybrid fictitious domain-immersed boundary method (Municchi and Radl, 2017, 2018; Isoz et al., 2022), a
representative of the discrete forcing methods.
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Fig. 2: (a) Finite volume mesh Ωh. (b) Solid body B projected on Ωh with diffuse discrete solid-fluid
interface Γh

sf . (c) Resulting λ field. (d) Illustration of the ceiling function used in (2). Image adapted
from (Kubı́čková and Isoz, 2023).

The additional forcing term fib in (1) is based on the so-called λ field indicating the position of Ωs in Ω and
is defined as

fib = ceil(λ)f̃ib , f̃ib =M(uib) +∇p̃ , λ =





0 in Ωf

1 in Ωs

λ̃ ∈ (0, 1) in Γsf

(2)

where uib is the flow velocity imposed inside Ωs. Dividing Ωs into individual solid bodies and marking
a single body as B, the imposed velocity uib must be calculated so that the prescribed velocity boundary
condition is fulfilled on ΓB

sf for all the bodies present in Ω.

In the used variant of the method, the forcing term fib is constructed only after finite-volume discretization
of (1). Projection of solid phase onto the finite volume mesh Ωh and construction of the discrete fib is
illustrated in Fig. 2. The interface values of λ are computed based on the signed distance between the
centroid of each B surface cell (in blue in Fig. 2b) and the B surface (Isoz et al., 2022).
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(b)

Fig. 3: (a) Interpolation points for a surface cell Ωh
P . The points P1 and P2 are interpolation points located

in Ωf and S is a point at the B surface. (b) Example of a quadratic interpolation profile along the normal
surface direction. Image adapted from (Kubı́čková and Isoz, 2023).
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For any intensive tensorial property φ, Dirichlet boundary conditions at ΓB
sf , that is, at the surface of B, are

enforced by adjusting the values in the surface cells Γh
sf . In particular, second order polynomial approxi-

mation is used to estimate the value of φ at the centroid P (φP ) of the surface cell Ωh
P from the prescribed

value in the surface point S (φS) and free-stream values in points P1 (φP1
) and P2 (φP2

) located at a line r
passing through P and normal to S. The situation is illustrated in Fig. 3, for details see Isoz et al. (2022);
Kubı́čková and Isoz (2023).

The movement of individual solid bodies Bi, i = 1, . . . ,nSolids is solved within the Lagrangian frame-
work, using a soft variant of the discrete element method. The Newton’s equations of motions for Bi are

mi
d2xi

dt2
= fg + fd + fc , Ii

dωi

dt
= td + tc , (3)

where mi stands for the mass of Bi and xi(t) for its center of mass position at time t, ωi is the body angular
velocity and Ii is the matrix of its inertial moments. On the right hand side of (3)1, fg = mig(1− (ρf/ρs))
is the gravity/buoyancy force, fd is the drag force obtained by integrating fib over surface cells of Bi and
fc is the contact force. In (3)2, td and tc denote the drag and contact torques, respectively.

The treatment of contact will be illustrated on computation of normal contact force acting between solids
Bi and Bj , hereafter marked fn

c . The fn
c computation is based on the work of Chen (2012), with particle-

particle overlap scaled by the overlap volume V o
ij , and reads as

fn
c =

(
YijV

o
ij

Lc
ij

+ γnij

√
YijM red

ij

(Lc
ij)

3

∂V o
ij

∂t

)
nc , (4)

where nc is the contact normal vector, Yij and γij,n are the characteristic Young’s modulus and normal
damping coefficient, respectively, Lc

ij is the contact characteristic length, and M red
ij is the reduced mass.

The contact parameters Yij , γnij , L
c
ij and M red

ij are computed as harmonic averages of the individual solids
properties, which corresponds to damped springs in series.

The model (4) is particularly sensitive to the accuracy of V o
ij and nc. While it is possible to compute these

utilising directly the finite volume mesh Ωh as described in Isoz et al. (2022), the sensitivity of (4) to V o
ij

leads to either unrealistic demands on Ωh resolution or to insufficient fn
c accuracy (Studenı́k et al., 2022).

Altogether, the presented PR-DNS method provides a tool for detailed studies of small-scale systems, i.e.,
of fairly dilute laminar or almost laminar suspension flow. To increase the method applicability to real-
life situations, we are currently focusing on three, below presented, research areas: (i) implementation of
phenomenological turbulence models to enable PR-large eddy simulation (PR-LES) or even PR-Reynolds-
averaged simulation (PR-RAS) of suspension flow, (ii) increasing contact solution efficiency to facilitate
simulations of suspension flows with particle fractions approaching the closely packed bed, and (iii) devel-
opment of methods of a-posteriori model order reduction to speed-up evaluation of parametric studies or
optimizations.

3. Immersed boundary method and turbulence models

Two main approaches were considered to couple our PR-DNS solver with phenomenological turbulence
modeling, PR-LES and PR-RAS. The PR-LES approach is closer to the actual flow physics. Compared to
PR-RAS, PR-LES is (i) closer to the actual flow physics, (ii) computationally more costly, and (iii) easier
to implement. Thus, we started with PR-RAS and the current implementation of turbulence covers the
standard two-equation models, namely the k-ω, k-ε, k-ω SST and realizable k-ε models were implemented
with wall functions for k, ω and ε.

The governing equations used are the Reynolds averaged variant of equations (1) with the Boussinesq
hypothesis applied,

M(u) = −∇p̂+ f t
ib

∇ · u = 0
,
M(u) =

∂u

∂t
+∇ · (u⊗ u)−∇ · [(ν + νt)∇u]

f t
ib = αu(λ) [M(uib) +∇p̂ ]

, (5)

where p̂ is the turbulent pressure and νt the turbulent viscosity. The force term f t
ib is similar to fib from (2)

with the ceiling function substituted by an αu field allowing for an adaptive boundary layer modeling, cf.
Fig. 2d and Fig. 4b.
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(a) 1.0λ [−]0.0 (b)

in-solid cells
αu = 1.0, αk = 1.0

boundary cells
αu ∈ {0, 1}, αk = 1.0

free-stream cells
αu = 0.0, αk = 0.0

Fig. 4: (a) λ field from Fig. 2c. (b) λ-based cell division with values of the α fields.

The equations (5) are supplemented by the turbulence model equations in the form

N (k) = Sib, ∇ · (uω) = ∇ ·
[(

ν +
νt
σω1

)
∇ω
]
+ Sω ,

N (k) = ∇ · (u k)−∇ ·
[(

ν +
νt
σk1

)
∇k
]
− Sk, Sib = αk(λ) N (kib) ,

(6)

where k is the turbulence kinetic energy, ω the specific rate of dissipation of k and the rest of the symbols
represent model constants. Similarly to the momentum equation, the k conservation equation was extended
by a source term Sib to account for the presence of the solid body and to enforce boundary conditions for k
by imposing kib in cells with non-zero αk, see Fig. 4b. Boundary conditions for ω are enforced by imposing
ωib values via a direct manipulation of the discretization matrix.

The values prescribed in the in-solid cells, see Fig. 4b, are simply set as uib = 0, kib = 0, ωib =
max(ωold). In the boundary cells, the ωib are computed via wall functions in forms reported by Kalitzin
et al. (2005). The values of kib are reconstructed via interpolation between values at the solid surface ob-
tained from wall functions and values in the free-stream. For low normalized distance to the wall (y+), the
used interpolation is, similarly to the laminar code version, quadratic polynomial. For high y+ values, a
logarithmic interpolation is applied. Also, the imposed velocity values are computed via quadratic inter-
polation which is, however, used only for low y+. In cells with high y+, the αu is set to be zero and the
near-wall velocity behavior is governed by νt.
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Fig. 5: Comparison of transversal velocity and turbulent viscosity profiles from simulations run with Re =
106 on bent geometries that are depicted at the top.

The PR-RAS is in early development and up to now, it was verified on test cases with simple geometries and
compared against simulations with geometry-conforming meshes run in simpleFoam (OpenCFD, 2007). In
Fig. 5, there are depicted transversal velocity and turbulent viscosity profiles in flows with high Reynolds
number in bent pipes. Overall, the PR-RAS shows acceptable accuracy but further validation is required.
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4. Efficient contact treatment for arbitrarily shaped solids

Bi

Bj

ΩV

ξ0
ξ1

ξ2

ξE

nc

ρc

(a) (b)

Fig. 6: Visualization of (a) virtual mesh (ΩV ) construction principle, (b) edge sub-volumes (ξE ), contact
plane (ρc) and contact normal (nc) determination.

With the underlying finite volume mesh (Ωh), the applied DEM variant is close to the level-set methods.
However, the sensitivity of the contact model (4) to the accuracy of the overlap volume (V o) computation
leads to strict requirements for the resolution of the DEM computational mesh. In standard CFD codes, it
is possible to adaptively refine Ωh using the λ field, which indicates the positions of solid bodies in Ωh.
However, Ωh is forced to carry all the data required by FVM, and its refinement is computationally costly.
At the same time, most of these data are not required in the DEM part of the code.

To increase the efficiency of the code while maintaining the ability to work with arbitrarily shaped solids,
we previously proposed an approach to complement a coarse (or flow-defined) FV mesh by a purely DEM
virtual mesh localized only in the vicinity of possible or occurring contact (Studenı́k et al., 2022). Lately,
the code was further improved by replacing a fixed virtual mesh discretization step by an R-Tree-based
adaptive discretization.

R-Tree searching itself is a powerful algorithm for indexing and searching multi-dimensional data, such
as spatial or geographical information (Guttman, 1984). The algorithm works by dividing the data into
a hierarchy of hexahedra, where each node in the tree represents a bounding box that contains a subset
of the data. This allows for efficient searching and retrieval of data that is spread out across multiple
dimensions. In our implementation, R-Tree is used to efficiently detect and resolve contact between two
geometry-defined solids.

To accurately compute V o
ij for contact between the solids Bi and Bj , we begin by constructing a hexahedron

that represents the root node of the R-Tree. This hexahedron is formed as an intersection of the bounding
boxes of the two solids, see ξ0 in Fig. 6a. The R-Tree root is then divided into smaller hexahedra (sub-
volumes) to search for all the overlapping areas between the two objects, see ξ1 in Fig. 6a. If a sub-volume
ξk does not intersect the boundary of Bi or Bj and it is not internal for both the bodies, it is discarded;
see ξ2 in Fig. 6a. A non-intersecting sub-volume internal for both Bi and Bj is added to the total overlap
volume V o

ij . Finally, all the sub-volumes lying in side Bi and intersecting the surface of Bj , or the other way
around, are further refined. The resulting virtual mesh with maximum sub-volume refinement level ℓξ = 5
is marked ΩV and visualized in Fig. 6a.

In Fig. 6b, we show the edge sub-volumes ξE identified as R-Tree hexahedra intersecting surfaces of both
Bi and Bj at the same time. Note that ξE always have the maximum allowed sub-volume refinement level.
The edge sub-volumes are used to identify the contact plane (ρc) and to get the contact normal nc, which
is crucial for fn

c direction. Note that ξE do not usually lie perfectly in a single plane, as depicted in Fig. 6b.
Consequently, the least-squares fit is used to obtain ρc.
Illustrative results of the R-tree-based virtual mesh approach are shown in Fig. 7. In the test, the solved
contact is similar to the one shown in Fig. 6. In particular, we consider one pair of identical spherical
particles projected onto a uniform hexahedral finite volume mesh with a resolution such that the particle
diameter dp spans over 20 FV cells. The top (green) sphere moves towards the stationary (red) sphere. The
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Fig. 7: Computation of normal contact force (fc) between two spheres. (a) Accuracy of ∥fc∥ in dependence
on the highest admissible local refinement level (LV). (b) Contact computing cost relative to contact between
two perfect spheres for virtual mesh (VM) and adaptive CFD mesh refinement (AMR).

initial distance between the spheres is 1.5 dp and the initial velocity of the green sphere is 1m s−1. Both
spheres are considered to be of the same perfectly elastic material of Y = 0.1GPa and ρ = 1000 kgm−3.

In Fig. 7a, we compare the accuracy of the contact normal force computation for different maximum allowed
sub-volume refinement levels (ℓkξ , k = 1, . . . , 6) to the analytical solution obtained for a contact between
two perfect spheres. Note that for ℓ3ξ the results are already (i) almost indistinguishable from the finest
refinement ℓ6ξ , and (ii) close to the analytical solution.

The computing times required to obtain the solutions given in Fig. 7a are given in Fig. 7b. Furthermore,
we compare the virtual mesh (VM) solution times to the times required when the adaptive mesh refinement
(AMR) of the finite volume mesh is applied. All the shown times are scaled by the solution time of the
contact between two perfect spheres, which leverages the geometric simplicity to compute V o analytically.
The AMR results were computed only up to ℓ3ξ , as higher refinement level were computationally unfeasible.
Note that the computing times for ℓ1ξ , ℓ2ξ , and ℓ3ξ are almost identical because the virtual mesh initialization
requires more resources than the computation itself. For higher refinement levels ℓkξ , k ≥ 3, the R-Tree
based ΩV computational cost scale approximately as k1.3.

5. Model order reduction

Even with the above outlined attempts to decrease the computational requirements of our particle-resolved
CFD-DEM solver, these requirements still remain such that the solver is impractical for use in parametric
studies or optimizations. However, computational costs of these two solver applications, i.e., parametric
studies and optimizations, have been succesfully mitigated via methods of a-posteriori model order reduc-
tion (MOR) (Kahlbacher and Volkwein, 2007; Isoz, 2019).

Probably the most popular MOR approaches are based on a combination of the proper orthogonal decom-
position (POD) by Pearson (1901) with Galerkin projection. Let us assume a physical system described
by a transient partial differential equation (PDE). First, the PDE is spatially discretitized, e.g. by the finite
volume method, to obtain a large system of ordinary differential equations, the full order model (FOM).
Next, the FOM is (numerically) integrated in time to obtain an approximate solution of the original PDE.

Let {yi := y(ti)}ni=1 with yi ∈ Rm be the saved snapshots of the full order model with spatial resolution
m. To perform POD-Galerkin model order reduction, the FOM snapshots are saved in a matrix of snapshots
Y = [y1, ...,yn] ∈ Rm×n, where n is the number of available snapshots. Note that usually, rank (Y ) = n.

Afterwards, a low rank approximation of the matrix Y , marked Y ℓ, is constructed via a truncated singular
value decomposition of Y as

Y ≈ Y ℓ = ΨℓHℓ, Hℓ = Σℓ
(
V ℓ
)T

, Ψℓ ∈ Rm×ℓ, Σℓ = diag(σ1, ..., σℓ) ∈ Rℓ×ℓ, Hℓ ∈ Rℓ×n, (7)

where Ψℓ comprises the first ℓ stationary orthonormal spatial modes {ψr}ℓr=1, toposes; and Hℓ their corre-
sponding time-dependent amplitudes {ηr}ℓr=1, chronoses. In other words, yi is approximated by a sum of
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Fig. 8: PODIANN and sPODIANN framework architecture. The modifications required to replace POD by
sPOD for time-dependent systems are given in green. Image from (Kovárnová et al., 2022)

the first ℓ dyadic pairs (ψr ⊗ ηr), r = 1, . . . , ℓ. The number ℓ can be chosen based on the sought precision
and the rate of decay of the singular values (σi) – the faster the decay, the more information is stored in the
first modes.

Finally, the matrix Ψℓ is used as a projector to construct the reduced order model (ROM) as

FOM

ẏ = Ay + f(t,y) ,

∀t ∈ (0, T ] , y(0) = y0

(Ψℓ)T−−−−→←−−−−
Ψℓ

ROM

η̇ℓ = Aℓηℓ + f ℓ(t,ηℓ) ,

∀ t ∈ (0, T ], ηℓ(0) = ηℓ0
projection

Aℓ =
(
Ψℓ
)T

AΨℓ, f ℓ(t,ηℓ) = (Ψℓ)Tf(t,Ψℓηℓ), ηℓ(0) = (Ψℓ)Ty0

(8)

Where y(t) and ηℓ are the original and the new variables, respectively; Ay is the linear part of the original
system and f(t,y) comprises its non-linearity. Note that the new variable, ηℓ, corresponds to the chronoses
obtained from POD.

For transport-dominated systems such as those stemming from PR-DNS, the singular values decay tends
to be extremely slow (Kovárnová et al., 2022). This renders construction of Y ℓ via POD impractical as
ℓ → n is required to obtain an acceptable approximation. On the other hand, if one applies an operator
T −∆t

(y(t, x)) to move the data into a frame of reference co-moving with the transport, the data become
seemingly stationary and their POD-based approximation is, once more, efficient. While there exist multiple
approaches to T −∆t

definition, we have chosen to use the one by Reiss et al. (2018), called shifted POD
(sPOD), that is able to treat systems with multiple different transports, (quasi-)optimally sort the data into
individual frames of reference, apply the transport operators and reconstruct Y ℓ as

Y ℓ =

Nf∑

k=1

T ∆t
k

(
ℓk∑

r=1

ψk
r ⊗ ηkr

)
=

Nf∑

k=1

T ∆t
k

(
Ψℓk

k Hℓk
k

)
, (9)

where Nf is the number of frames of reference. Shifted POD requires information on the transports
{T −∆t

k}Nf

k=1 as an input in addition to Y , but that can be obtained directly from the above presented CFD-
DEM solver.

Finally, for practical purposes it is necessary to have yℓ available as a time-continuous mapping, which
is traditionally achieved by the above-described Galerkin projection. However, using the sPOD disallows
for Galerkin projection as no unique projector is available, cf. (8) and (9). Therefore, time-continuous yℓ
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(a)
FOM PODIANN – 20 modes sPODIANN – 2 modes

g 1.0λ [−]0.0

(b)
FOM PODIANN – 12 modes sPODIANN – 4 modes

0.025∥u∥ [LT−1]0.0

Fig. 9: Model order reduction of two falling discs, (a) qualitative view of the λ field at a given time,
(b) qualitative view of the velocity field. Note the non-physical oscillations in PODIANN reconstructions,
visible particularly in the case of the λ field, that stem from the inability of POD to capture transport.

needs to be found in another way – we have decided to use artificial neural networks as an interpolator
between the known values stored in Hℓ. The resulting method, shifted proper orthogonal decomposition
with interpolation via artificial neural networks (sPODIANN), is outlined in Fig. 8.

The sPODIANN framework was applied to a simple two-dimensional system comprising two discs un-
dergoing a gravity-driven motion through a rectangular periodic domain. The discs have the diameter
dp = 0.001m and are from materials with ρ1 = 1030 kgm−3, and ρ2 = 1060 kgm−3, respectively. The
domain itself has dimensions 20 dp × 10 dp, is filled with a fluid of ρf = 1000 kgm−3 and νf = 10−6 Pa s,
and is discretized into 45000 FV cells (15 cells per dp). In total, 601 evenly-spaced temporal snapshots are
available for the ROM construction.

In Fig. 9, we compare the results of PODIANN (without transport operators) and sPODIANN frameworks.
The approximation of the indicator λ field is shown in Fig. 9a, while the approximation of velocity is given
in Fig. 9b. Note the wrong PODIANN λ field result obtained even for 20 POD modes, and the superior flow
features resolution in the vicinity of the discs provided by sPODIANN.

6. Conclusions

In the present contribution, we outlined fundamentals of an in-house solver for particle-resolved direct
numerical simulation (PR-DNS) of flows laden with arbitrarily-shaped particles. Afterwards, three differ-
ent strategies to mitigate the extreme costs of PR-DNS were studied. In particular, we (i) examined the
possibility to endow the used immersed boundary method variant with computationally cheap phenomeno-
logical turbulence modeling that provides a good agreement with results obtained on geometry-conforming
meshes; (ii) presented an approach to treatment of contact between two geometry-defined solids capable of
estimating the contact normal force close to the perfect sphere DEM with only four times its cost, and (iii)
described a method for a-posteriori model order reduction applicable to PR-DNS-generated data. While all
the shown results are only preliminary, they hint at the future potential of the presented methods.
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