
COMPRESSOR CASCADE POSITIVE AND NEGATIVE STALL
INCIDENCE ANGLE CORRELATION MODELLING

USING ARTIFICIAL NEURAL NETWORKS
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Abstract: The analysis of the flows by computational fluid dynamics becomes useful design and optimization
method during recent years. Despite the advances in the computational power but it could be still very de-
manding. Therefore empirical models are commonly used as a main tool for design and prediction of basic
performance of axial compressor cascades. The empirical correlations are derived from experimental data ob-
tained from two-dimensional measurements. Unfortunately, sufficient amount of data is available only in cases
of well-known airfoils as e.g. NACA 65-series or C.4 profiles. Thus, there is en effort to find a similar relation
which will serve in the same manner for another family of the airfoils. The construction of such correlations
using artificial neural networks is proposed in this work. In contrast to standard deep neural network, the
proposed neural network is built using higher order neural units.
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1. Introduction

When low Mach number flow occur, C.4 circular-arc profiles or NACA 65-series are sufficient. According
to Aungier (2003), when the flow is accelerated to high subsonic, transonic even to low supersonic veloci-
ties, well-known profiles as DCA (Double-circular arc) and MCA (Multi-circular arc) perform better. CD
(Controlled diffusion) airfoils introduce suitable family of the airfoils for subsonic and transonic cascade
applications. Their power lies in their construction and optimization for these applications. The shape con-
struction employs the concept of shaping the blade beyond the point of peak suction of the surface velocity
such that the diffusion rate and associated suction boundary layer results in minimum loss for the airfoil
section Salunke and Channiwala (2010). On the other hand they provide relatively tight range of acceptable
incidence angles Aungier (2003).

In the real operation, it can be very tricky to reach stable design conditions that can have fatal consequences,
especially in some complex engineering applications, e.g., nuclear reactor cooling by an axial compressor
as a part of the secondary system. Thus it is necessary to ensure reliable operation of the device when
off-design conditions occur. Klesa (2021) introduced new family of the airfoils working in wide range of
acceptable incidence angles which should outperform well-known NACA 65-series and even their perfor-
mance should be comparable with CD airfoils.

Flow analysis by means of computational fluid dynamics (CFD) could be still very demanding, thus em-
pirical correlations are commonly used as a tool for design and prediction of axial compressor cascade
performance. Our previous research Kovář and Fürst (2022a) was aimed to total pressure loss correlation
modelling at the design point of the cascade for the new airfoils family in order to accelerate the design of
compressor cascade. When off-design points have to be investigated, applicable incidence angles bounds
knowledge which allows us more comprehensive study is necessary. Present contribution deals with pos-
itive and negative stall incidence angle correlation modelling for the new family of airfoils using artificial
neural network (ANN).
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1580/30; 160 00, Prague; CZ, Patrik.Kovar@fs.cvut.cz
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2. Objective statement

The loss coefficient is fairly constant over a range of incidence angles near the design incidence angle i∗, but
increases rapidly when the cascade is operated too far from the design incidence angle. It is conventional
practice to define the limits of low-loss operation by the positive and negative stall incidence angles, is
and ic, where the loss coefficient becomes twice the minimum loss coefficient PL. According to Aungier
(2003), low-loss working ranges for low-speed cascades can be designated as Rc and Rs

Rc = α∗ − αc = i∗ − ic; Rs = αs − α∗ = is − i∗. (1)

Since α is a function of β1, these equations are not directly usable in a performance analysis. But since
β1 = α+ γ, they can be applied by a simple iterative solution as described in Aungier (2003)
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(
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According to Johnsen and Bullock (1965) effect of Mach number on positive and negative stall incidence
angles can be involved as

ic = i∗ − Rc

1 + 0.5M ′3
1

; is = i∗ +
Rs

1 + 0.5(KshM
′
1)

3
; Ksh ≤ 1. (3)

As it can be seen in equations above, the dependence between stall incidence angles ic and is, camber angle
Θ and parameters of the flow β1, α∗, αc, αs, i∗, M ′

1 is strongly non-linear that is a suitable task for ANN.

3. Methodology

The information in the individual neurons is processed in two different ways Gupta et al. (2013). Synaptic
operation, the first, contains weights of the synapse which represents storage of knowledge and thus the
memory for previous knowledge. Somatic operation is the second and provides various mathematical oper-
ations such as thresholding, non-linear activation, aggregation, etc. Neural output of the unit ỹ is scalar as
it is indicated in Figure 1 (left). Let us assume N -th order neural unit, then neural output can be written as
Gupta et al. (2004).

ỹ = σ(s); s = w0x0 +

n∑

i=1

wixi +

n∑

i=1

n∑

j=i

wijxixj + · · ·+
n∑

i1=1

· · ·
n∑

iN=iN−1

wi1i2...inxi1xi2 . . . xin , (4)

where x0 = 1 denotes threshold and n stands for length of input feature vector.

Shallow neural network is consisted of three neural units with quadratic polynomial synaptic operation.
Two neurons are in the first layer and bipolar sigmoid activation function σ(·) is prescribed. The third
neuron is in the output layer with linear activation. Neural network architecture is schematically shown in
the Figure 1 (right). For the error propagation, multilayer backpropagation algorithm, described in Gupta
et al. (2004), is employed in this work.
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Fig. 1: Neural network: single neural unit (left); shallow neural network (right).
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Since desired outputs are known, machine learning is called as supervised learning which is the task of
learning a function that maps input to an output represented with cost function #–e . As we could see,
the neural output is strongly dependent on the neural memories represented by vector of the weights

#  –

W .
Batch Levenberg-Marquardt algorithm for weights updating is employed in this work. See Kovář and Fürst
(2022a), Kovář and Fürst (2022b) for more details of the learning methodology.

In order to obtain training data set for neural network and replace experimental measurement, various
numerical simulations with different geometrical setups and inlet boundary conditions were performed as
e.g. in Bublı́k et al. (2023). Design incidence angle was found through number of simulations as the flow
angle with minimum pressure loss as described in Aungier (2003). Positive and negative stall incidence
angles ic, is was found as angles where pressure loss PL reaches twofold.

4. Results

In order to avoid network overtraining, the data set was divided into three parts. 80% of samples belongs to
training subset and the rest was equally distributed to validating and testing subsets. Learning rate µ was set
to µ = 0.4. Following figures present modelling of the positive stall incidence angle is. Training processes
for i and ic incidence angles correlations modelling were performed similarly. Referring to Fig. 2 (left),
85 epochs was sufficient to neural network got learned with testing error 2.49e−3. A comparison of the
function learned by ANN and estimation performed by equations (1 - 3) is shown in the Fig. 2 (right).

Fig. 2: Results: progress of the learning (left); ANN results compared to literature correlations (right).

Finally, there is a test of neural network predictions performed on the cascade geometry which was not
included in the training data set, specifically the cascade with κ1 = 40◦ and θ = 30◦. A comparison between
design, positive and negative stall incidence angles predictions obtained by aforementioned methods is
shown in Fig. 3. As it can be seen at first sight, estimation of incidence angles by correlations from the
literature is completely beyond the data from CFD unlike the approach by ANN.

Fig. 3: Results: comparison of incidence angles obtained by literature correlations and ANN approach.
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Deviations performed by artificial neural network and the correlations from the literature compared to data
obtained by CFD are listed in the Table 1, both measured with relative error related to the value from CFD.

Tab. 1: Absolute and relative error comparison.

Method CFD ANN Literature

Quantity Value [◦] Value [◦] ER [%] Value [◦] ER [%]

ic 2.50 0.23 90.81 −6.14 345.75

i∗ 6.10 6.58 7.82 0.66 89.12

is 9.30 9.27 0.32 7.71 17.09

5. Conclusions

An approach for correlation modelling was presented in this paper. Based on input data set obtained by
CFD simulations, artificial neural network was learned to predict positive and negative stall incidence angle
of axial compressor cascade designed with the new family of the airfoils. Results of the learning are com-
pared against empirical model by Johnsen and Bullock (1965). Approximation using ANN outperformed
available correlation model from the literature as it can be seen in the Table 1.

Further work should aim to axial compressor cascade performance predicting at off-design points which
will require much larger training data set. Another way could be the inverse task, i.e., assemble the model
estimating airfoil geometry based on desired flow parameters.
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