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Abstract: Development of phenomenological plasticity models, hardening rules, and plasticity theories relies
on experimental  data of  plastic straining.  The experimental  data are usually  measured as the stress–strain
response of the material being loaded and do not provide any clues or information about the local response of
material. In this paper, we analyze the plastic deformation of the material using the acoustic emission method
and current state-of-the-art neural network models such as the InceptionTime architecture.
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1. Introduction

Phenomenological plasticity models are commonly implemented in various FE codes. The models are
crucial to design, analyze, and assess engineering structures with respect to various damage modes and
other related phenomena, e.g., static overloading, ratcheting, low cycle fatigue, and residual stresses. Cf.
Welling et al. (2017) and Halama et al. (2008). From the experimental point of view, metal plasticity is
mostly related to permanent strains and determined by reaching a prescribed strain threshold. In some
applications where the plastic strain onset needs to be precisely determined, the plastic strain might be
determined as the deviation of linear elastic behavior of material, see Wu and Yeh (1991) and Štefan et
al. (2021).

However, experimentally, strain is usually measured globally and assumed to be uniform in a region of
interest.  Therefore,  local  information  about  plastic  deformation  is  lacking.   Further,  metals  manifest
various  strain  hardening  mechanisms  some  of  which  can  be  observed  by  advanced  experimental
techniques only.  Cf. Parma  et  al. (2018) and Marek  et  al. (2022).  Therefore, it  is  appropriate to use
additional experimental methods independent of global strain measurement to analyze plastic straining of
metals, evaluate strain hardening, and, possibly, calibrate models.

In this work, we have employed an acoustic emission method to experimentally analyze plastic straining
of material under uniaxial loading. See Kovanda (2021). Acoustic emissions (AEs) are transient elastic
waves that occur in solids due to dynamic changes within the material. AEs are usually detected on the
surface of the material. Traditionally, measurement of surface displacement caused by the dislocation slip
within  the  material  using  an  AE  method  is  very  demanding  and  requires  precision  in  the  AE
measurement.  However,  now,  AE can be extensively studied due to  the  great  advances  in  bulk data
processing and the availability of ultrasonic measurement equipment. AE together with machine learning
methods offers a promising tool for plasticity detection. In this paper, an artificial neural network (ANN)
architecture was trained to detect the onset of plastic deformation based only on a section of continuous
emission signal recording. Its results are demonstrated on real data.
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2. Experimental setup

The specimens were loaded on axial-torsional testing system of Instron 8852 type. The testing system
consists  of  a  universal  hydraulic  testing  machine,  hydraulic  power  unit,  control  unit,  and  personal
computer. The system has an axial load capacity of ±100 kN. The testing procedure was designed in the
proprietary software Bluehill  Universal  by Instron company.  Strains were measured by AVE-2 Non-
Contacting Video Extensometer also supplied by the Instron company.   To dampen the noise of the
hydraulic system of the testing machine, special polyamide thin plates were used to acoustically separate
the wedge grips from the machine frame.  Concerning AE equipment, two piezoelectric sensors (Dakel
IDK-9) were glued to the surface of the material to measure elastic waves and convert them into electrical
signals. The signal path also contained preamplifiers (PAC 2/4/6) to suppress interference. Finally, a USB
oscilloscope (TiePie Handyscope HS6) was used for continuous recording of the emission signal (see
Fig. 1).

            

Fig. 1: Specimen in testing machine, USB oscilloscope, AE preamp and sensor.

3. Neural network implementation

All tested neural network architectures were created in the Keras library of the Python environment with
the tensorflow backend, as it is well established and optimized for training on GPUs. Training on a GPU
instead of a CPU is essential to speed up the process. For this reason, an NVIDIA GEFORCE RTX 2070
graphics chip with 8GB of memory was used for training and evaluation. Another reason for using these
libraries is that they are widely used by researchers and developers around the world. It's also worth
noting that there are multiple Python libraries designed to handle neural networks, such as the PyTorch
library, which is becoming increasingly popular since 2021. Both libraries offer a good background for
creating neural networks with many state-of-the-art models already implemented.

To analyze the whole length of experimental data, the training and validation intervals are chosen from
both the plasticity and elasticity part of the measured signal, as described in Fig. 2. These parts were
determined by expert estimates of the highest probability of occurrence or absence of plastic deformation
in the respective time windows.  After  successful  training,  resulting networks evaluated the emission
signal over its entire length, corresponding to the duration of the tensile test. The output symptom vector
then responds in some way to indications of plastic deformation in the input signal. The success rate of
the networks at the times between training intervals can then be discussed with respect to the evolution of
the load curves.
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Fig. 2: Force and displacement curve – data from testing machine.

All architectures created need a well-defined input shape. For 2D convolutional networks, the input must
have three dimensions, and for 1D convolutional networks, two dimensions. The last dimension consists
of the different measured channels, if available. In the described experiment, two channels were available,
i.e.  a continuous signal from two AE sensors, see previous section. In order to use 2D convolutional
networks,  the  signal  must  be transformed using a suitable time-frequency transform.  This presents  a
certain disadvantage of these architectures in the form of the time-consuming computation of input data
with sufficient resolution, e.g. continuous wavelet transform or spectrogram with a selectable frequency
axis.

The next model investigated is the InceptionTime architecture, which takes as input a section of the signal
itself.  This model had by far  the best  results and is  stable even with respect to the requirements for
manually selected hyperparameters. Since the measured signal is continuous, the input can be taken from
any position in the training intervals.  This allows an extensive set  of  input  tensors (or arrays) to be
created, all of which are distinct. This approach can help reduce overfitting.

In order to fit  the network from the raw or transformed data, Python generators were created. These
generators take all the input data and generate individual inputs that match the network input size from
determined intervals. This significantly reduces the memory demand because these generators do not use
any memory until the particular data is needed. After their usage the memory is freed, and another data is
created.

4. Signal evaluation

Three generators were made in order to train the network, evaluate the network and evaluate all  the
signal. The first two mentioned generators are configured so that it would generate data from randomly
sorted set of starting coordinates solely from one channel. The number of coordinates is chosen manually
and since all the generated data are different, all the training is processed in only one epoch.

The generator for the signal evaluation is created so that the individual data would not overlap. This
decision was made in order to reduce the evaluation time. Furthermore, experiments show that signal
evaluation results (output symptom vector) are in general very unstable, so the results are smoothed using
a Gauss window with manually chosen deviation.

Figure 3  illustrates  the  smoothed  output  of  eight  different  trained  versions  of  the  same  network
architecture.  These  results  also  show that  the  InceptionTime model  is  not  as  sensitive  to  the  initial
weights as many other architectures. All the predictions are almost identical with only a little difference
in their scaling. There is also a clear increase in the symptom vectors values (outputs of the networks)
from zero to one in the time corresponding to the deviation of the loading force (orange curve) from the
linear trend. Since the validation score on these data is exactly 100% on all eight trained networks, the
InceptionTime model was determined to be best for given task.
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Fig. 3: Results of the InceptionTime model applied to whole recorded signal.

5. Conclusions

Among  the  other  ANN  architectures  tested,  the  InceptionTime  model  performs  best  in  the  task  of
detecting dislocation slip in the metallic material sample under tensile testing. Moreover, this architecture
predicts reliable values for a signal measured on a different part of the material and even for a signal from
a different  experiment.  This makes the InceptionTime architecture the best  studied model  capable of
detecting  the  onset  of  plastic  deformation.  This  network  also  does  not  require  any  time-frequency
transformation because it is applied to the raw signal.
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