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Abstract: The paper deals with the homogenization-based modelling of periodic porous structures saturated
by a Newtonian fluid and locally controlable due to embedded piezoelectric segments which can induce a
peristaltic deformation of the microchannels, in response to prescribed propagating voltage waves. To respect
dynamic effects of the flow in bulged pores, where the advection term of the acceleration is important, two time
scales are considered and an appropriate time scaling of the fast-slow dynamics is introduced in a proportion
to the spatial scaling. The two-scale homogenized problem is nonlinear by the consequence of the advection
term in the flow model. Further nonlinearity is introduced by deformation-dependent homogenized coefficients
of the macroscopic equations. For this, a linear expansions based on the sensitivity analysis of the homogenized
coefficients with respect to the deformation induced by the macroscopic quantities is employed.
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1. Introduction

The peristaltic flow is induced by deforming wall of a channel. The study of this phenomenon is of a
great importance in physiology, biomechanics, and, as a driving mechanism of fluid transport, also in the
design of smart “bio-inspired” materials. We consider locally periodic porous structures occupying domain
Ω = Ωε

s ∪Ωε
f ∪ Γεfs , constituted by the solid phase Ωε

s and the pores saturated by a Newtonian fluid flowing
in channels Ωε

f = Ω \ Ωε
s, whereby ε is the microstructure scale. The solid phase Ωε

s = Ωε
m ∪ Ωε

∗ ∪ Γεm∗,
where Ωε

m = Ωε
e ∪ Ωε

z ∪ Γεez , contains an elastic-dielectric part Ωε
e, and piezoelectric segments Ωε

z which
can induce peristaltic deformation wave of the microchannels in response to the locally controlled electric
field due to distributed electrodes Ωε

∗ connected to an external circuit. Such a smart material can transform
a propagating electric potential wave into a peristaltic deformation wave propelling the fluid.

Using the asymptotic analysis w.r.t. the scale ε→ 0, pursuing our previous work (Rohan and Lukeš, 2018),
we have developed a nonlinear homogenized model of such a smart porous material which describes the
peristaltic-driven flow under a quasistatic regime, so disregarding any inertia effects (Rohan and Lukeš,
2021). Although the deformations are small and the channels do not collapse (the channel lumen is not
closing completely by the deformation), the homogenized model can mimic the peristalsis-driven flow
provided nonlinearity arising due to deformed configuration is accounted for conveniently. For this, we
employed an approximation which leads to a nonlinear model as the consequence of the effective model pa-
rameters (tensors) depending on the solution by virtue of the homogenization respecting locally deforming
microstructures (Rohan and Lukeš, 2015).

This paper presents some important issues to cope with when extending the homogenization problem for
the dynamic flow, namely respecting the inertia in the fluid. First we introduce the micromodel which is
subject of the asymptotic homogenization using the unfolding method (Cioranescu et. al, 2008), whereby a
relevant scaling by ε of some micromodel parameters must be introduced. Then two different situations of
respecting the flow dynamics are discussed.
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Fig. 1: Periodic microstructures and the representative cell Y decomposition.

2. Micromodel and the fluid-structure interaction problem

The periodic microstructure is generated by a rescaled reference periodic cell Y =]0, 1[3 decomposed into
non-overlapping subdomains Ym, Yf and Y∗, see Fig. 1, Y = Ym ∪ Yf ∪ Y∗, such that Ym = Ye ∪ Yz ,
where the subdomains Yd generate corresponding domains Ωε

d, d = e, z, ∗, f . For the device functionality,
at least two groups of separated electrodes Ωα,ε

∗ , α = 1, 2 represented by Y α
∗ ⊂ Y∗ must be considered;

domains Ωα,ε
∗ ⊂ Ωε

∗ are constituted by separated inclusions allowing for the local voltage control. In the
piezoelectric solid, the Cauchy stress tensor σε and the electric displacement ~Dε depend on the strain
tensor e(uε) = (∇uε+ (∇uε)T )/2 defined in terms of the displacement field uε = (uεi ), and on the electric
field ~E(ϕε) = ∇ϕε defined in terms of the electric potential ϕε. The following constitutive equations
characterize the piezoelectric solid in Ωε

s and, thereby, for vanishing gε, also the elastic parts in Ωε
e and Ωε

∗
(infinite dε),

σεij(uε, ϕε) = Aεijkle
ε
kl(uε)− gεkijEεk(ϕε) , Dε

k(uε, ϕε) = gεkije
ε
ij(uε) + dεklE

ε
l (ϕ

ε) , (1)

where AAε = (Aεijkl) is the 4th-order elasticity symmetric positive definite tensor satisfyingAijkl = Aklij =

Ajilk, the deformation is coupled with the electric field through the 3rd order tensor gε = (gεkij), gεkij = gεkji
and d = (dkl) is the electric permittivity tensor. A Newtonian barotropic fluid is characterized by the
dynamic viscosity µε, a reference density ρf and the fluid compressibility γ, the stress tensor is

σεf = −pεI + 2µε(II− 1

3
I ⊗ I)e(vf,ε) . (2)

The micromodel involves the following differential equations governing the fluid-solid interaction and the
electric field coupled with the deformation through the piezoelectric constitutive law (1),

ρsüε −∇ · σεs(uε, ϕε) = f s,ε , in Ωε
s ,

−∇ · ~Dε(uε, ϕε) = 0 , in Ωε
z ∪ Ωε

e ,

ρf

(
v̇f,ε + (wε · ∇)vf,ε

)
+∇pε − µε∇2vf,ε = f f,ε ,

γṗ+∇ · vf,ε = 0 , in Ωε
f ,

(3)

where fd,ε, d = s, f are the body forces. Note that the “dot” means the material derivative and the seepage
velocity wε = vf,ε − ˙̃uε is defined using an extension ˙̃uε of the solid phase velocity.

3. Homogenization and the problem nonlinearity treatment

To retain specific features of the micromodel (3) in the homogenization limit ε → 0, some of the involved
material parameters are considered to depend on ε. To allow for microstructures with strongly controlled
electric field, in formulation (3), spatially constant potentials ϕ̄α are given for each simply connected do-
main Ωα,ε

∗ occupied by the perfect conductor and represented by Y α
∗ within the cell Y . The following

assumptions are made where, for simplicity, parameters ḡ, d̄ and µ̄ are taken as constants:

a) Strongly controlled field: ϕα,ε = ϕ̄α in Ωα,ε
∗ ,

b) Weakly piezoelectric material: gε(x) = εḡ , dε(x) = ε2d̄ , in Ωε
z ∪ Ωε

e ,

c) viscous flow with the nonslip condition on pore walls, µε = εβµ̄ , in Ωε
f ,

(4)

216

216 Engineering Mechanics 2023, Svratka, Czech Republic, May 9 –11



where β = 2, or β = 3/2, depending on the flow dynamics approximation. Above, the scaling b) is the
consequence of the locally controlled electric field, a).

3.1. Nonsteady Stokes flow, neglected advection inertia

Neglecting the advection term (wε · ∇)vf,ε in (3) leads to the same scaling, as in the quasi-static case,
β = 2 in (4)(c). The homogenization using the approach explained in (Rohan and Naili, 2020) provides
an extension of the piezo-poroelastic model derived in (Rohan and Lukeš, 2018) for disconnected porosity.
The macroscopic displacement u0, the flow seepage w0 and pressure p0 satisfy the following coupled equa-
tions involving the homogenized (effective) coefficients IH := (AA,B,M,Zα,Hα) of the piezo-poroelastic
model, and the dynamic permeability K(t), such that

ρ̄∂2
ttu

0 + φfρf∂tw−∇ ·
(

AAe(u)− p0B +
∑

α

Hαϕ̄α

)
= f̂ ,

B : e(∂tu0) +M∂tp
0 +∇ · w =

∑

α

Zα∂tϕ̄
α ,

where w(t, x) = − 1

µ̄

∫ t

0
K(t− s)(∇p(s, ·)− f f (s, ·)) dt ,

(5)

where ρ̄ and φfρf are the effective densities of the mixture and of the fluid, respectively. For a suitable
given electric potential control {ϕ̄α}α(t, x), a peristaltic deformation wave propagates. However, model
(5) can induce a fluid flow opposed to the one caused by the pressure gradient only when the nonlinearity
associated with respecting the deformed configuration effect of the homogenized coefficients is captured.
Using the sensitivity analysis approach explained in (Rohan and Lukeš, 2015), all the coefficients IH in (5)
can be replaced by ĨH introduced using the first order expansion formulae which have the generic form

ĨH(e(u), p) = IH0 + δeIH
0 : e(u) + δpIH

0p+
∑

α

δϕ,αIH0ϕ̄α , (6)

where δ♠IH0 is the gradient of IH0 w.r.t. the macroscopic quantity ♠. In the case of the permeability K(t),
an expansion analogous to (6) based on the sensitivity analysis is not obvious. A possible treatment is based
on the spectral decomposition of the seepage w using the eigenfunctions {ωr}r and eigenvalues {λr}r of
the eigenvalue problem Find (ωr, πr) ∈ H1

#0(Yf )×H1
#(Yf ), such that

af (ωr, ψ) + 〈∇yπr, ψ〉Yf
= λr 〈ωr, ψ〉Yf

, 〈∇yq, ωr〉Yf
= 0 , 〈ωr, ωr〉Yf

= 1 , (7)

for all (ψ, q) ∈ H1
#0(Yf ) × H1

#(Yf ); by # we label a space of Y -periodic functions. Then the seepage
is expressed using the basis {ωr}r, so that w(t, x, y) =

∑
r ω

r(y)ϑr(t, x). Respecting the deformation of
the microconfiguration due to the response at time t makes the eigenpairs (ωr(t), λ

r
(t)) to depend on t, as

indicated by (t). Upon denoting by 〈v〉Yf
= |Y |−1

∫
Yf
v the average, the seepage is given by

w(t, x) = −
∫ t

0
K(t, s)∇p0(s, x) ds−

∑

r

〈
ωr(t)

〉
Yf

e−λ
r
(t)t

∫ t

0
eλ

r
(s)s
〈
ωr(s)

〉
Yf

· ∇p0(s, x) ds , (8)

where the force f f is disregarded for the brevity. Hence, a nonlinear expression of the permeability, the
convolution kernel K(t, s) is obtained, since (ωr(t), λ

r
(t)) depend on the micro-deformation of channels Yf .

3.2. Navier-Stokes flow model, limit model with two-scales in space and time

In the case of the steady flow, the homogenization leads to the Forchheimer law, see e.g. (Peszyńska and
Trykozko, 2010; Rohan and Naili, 2020), in the nonsteady case, the treatment is even more delicate, cf. .
(Mikelic, 1991). To retain both the parts of the inertia ρf (v̇f,ε + (wε · ∇)vf,ε in the limit ε→ 0 a modified
scaling of the viscosity is needed; we consider β = 3/2 and the asymptotic expansion of the unfolded
Tε(wε(t, x)) = ε1/2(w0(t, τ, x, y) + εw1(t, τ, x, y) . . . ) where τ = ε−1/2t is the “fast time”; recall y = x/ε
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is the “fast spatial coordinate”. Using asymptotic expansions for uε, ϕε and pε, as in the quasistatic case,
the following limit equations governing the flow can be obtained,

ρf (∂τ + w0 · ∇y)(w0 + ∂τ ũ1) +∇xp0 +∇yp1 − µ̄∇2
y(w0 + ∂τ ũ1) = 0 ,

γ∂τp
0 +∇y · (w0 + ∂τ ũ1) +∇x · ∂τu0 = 0 ,

(9)

γ∂tp
0 +∇x · ∂tu0 +∇y · ∂tũ1 = 0 ,

γ∂τp
1 +∇x · (w0 + ∂τ ũ1) = 0 ,

(10)

where all two-scale time-space functions are Y, T -periodic in (y, τ). The two-scale limit equations govern-
ing the solid deformations involve the two-scale acceleration ∂2

ttu0 + ∂2
ττu1, but otherwise take the same

form, as in the quasistatic case. Without specifying mathematical details, namely the functional spaces, we
present the weak form with the test functions v0(x), v1(x, y), and ψ̂0(x, y),

∫

Ω
∼
∫

Ys

ρs(∂
2
ttu

0 + ∂2
ττu1) · v0

+

∫

Ω
∼
∫

Ys

(
AA
(
ex(u0) + ey(u1)

)
− ḡT∇yϕ̂0

)
:
(
ex(v0) + ey(v1)

)
=

∫

Ω
p0 ∼
∫

Γf

v1 · nf ,

∫

Ω
∼
∫

Ys

∇yψ̂0 ·
[
ḡ :
(
ex(u0) + ey(u1)

)
+ d̄∇yϕ̂0

]
= 0 .

(11)

Note that w0 is involved in (9)1 in a nonlinear form. Assuming a T -periodicity w.r.t. the time τ describing
a fast dynamics, the system (9), (10) and (11) simplifies upon time averaging in τ . Further details will be
reported in a forthcoming publication.

4. Conclusion

A model of electroactive porous material has been derived using the homogenization of the linearized fluid-
structure interaction problem. As confirmed by numerical studies, to achieve the desired pumping effect of
the homogenized continuum, it is necessary to account for the nonlinearity associated with deformation-
dependent microconfigurations and, hence, respecting deformation-dependent effective properties of the
homogenized material. For this, the sensitivity analysis approach has been applied which leads to a com-
putationally efficient numerical scheme for solving the nonlinear problem. As a new contribution, dynamic
aspects of the peristaltic deformation driven flow has been studied in the context of the homogenization.
Two different treatments of the flow inertia have been examined, leading to different homogenized models.
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