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Abstract: Heterogeneous catalysis contributes to producing more than 80 % of all chemical products in the
world. Industrial heterogeneous catalysis is a complex process that combines fully three-dimensional mass,
momentum, and energy transport on several scales. In the present work, we leverage our previously developed
CFD solver for non-isothermal heterogeneously catalyzed reactive flow based on the finite-volume method and
extend it with multicomponent Stefan-Maxwell diffusion description to handle high-concetration multicompo-
nent mixtures. The resulting framework is verified and validated on the simple Stefan tube experiment, for
which an analytical solution is available.
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1. Introduction

Heterogeneous catalysis plays a crucial role in numerous industrial chemical processes, ranging from mo-
bile applications in catalytic converters for automotive exhaust gas aftertreatment to stationary large indus-
trial reactors for natural gas conversion (Tischer et al., 2001) or ethylene oxychlorination. In the case of
mobile catalysts, the active catalytic material is usually coated in the form of a porous layer on the walls of
monolith channels (Blažek et al., 2021). For the fixed-bed reactors, the catalyst is deposited on and inside
catalyst-carrying particles.

However, there is still significant room for optimization of such processes (Fechete et al., 2012). The effi-
ciency of an arbitrary heterogeneous catalyzed process is strongly dependent on all the transport processes
inside the system. In particular, focusing onto mass transport, the following needs to be taken into account,
(i) global transport of reactive species inside the reactor, i.e., to and from porous media coated with catalytic
material, (ii) local diffusive transport inside the porous structure of the catalyst, and (iii) adsorption of re-
actants onto active sites and subsequent reaction followed by desorption of products. Furthermore, despite
the fact that the proper description of the high-concentration-mixture diffusion, which is common in the
real-life industrial processes, is well known for a long time (Taylor and Krishna, 1993), the most of the
newly developed computational fluid dynamics (CFD) solvers for coupled momentum and multicomponent
mass transfer, e.g. (Chandra et al., 2020), rely on simplified (linear) Fick’s diffusion.

The main goal of the present work is to extend our previously developed solver for heterogeneously cat-
alyzed reactive flow (Hlavatý et al., 2023b) by the Stefan-Maxwell diffusion description to deal with the
high-concentration mixtures commonly present in the industrial chemical reactors.

2. Model description

The presented model stems from our previously published OpenFOAM solver for the heterogeneously
catalyzed reactive flow for the simulations of the catalytic filters in the automotive exhaust gas aftertreat-
ment (Hlavatý et al., 2023b). Non-isothermal reactive flow of an ideal gas in the heterogeneous domain Ω
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is assumed, while the heterogeneity of Ω is ensured by dividing Ω in free space (Ωfs) and porous media
(Ωpm), such that Ω = Ωfs ∪ Ωpm and Ωfs ∩ Ωpm = ∅, and by using (i) effective diffusion coefficients, and
(ii) piece-wise continuous right hand side of governing equations, see (Hlavatý et al., 2022, 2023a,b).

Assuming a Newtonian gas, neglecting heat mechanical sources, and marking the velocity u, the mass
density ρ, the pressure p, and the temperature T , the steady-state momentum, mass, and heat transfer can
be, in order, described by the following set of balances,

∇ · [ρuuᵀ]−∇ · [µ (∇u + (∇u)ᵀ)] = −∇p+ ρsf , (1)

∇ · (ρu) = 0 , (2)

∇ · (uρωi)−∇ ·
(
ṁD

i

)
= sri , i = 1, . . . , n− 1 , (3)

∇ · (ρucpT )−∇ ·
(
λeff∇T

)
= sh , (4)

where µ is the dynamic viscosity of the gas, λeff is the effective heat conductivity, and cp is the heat
capacity. For more information on parameters’ computations see (Hlavatý et al., 2023a). The source term
ρsf describes the resistivity of the flow through the porous medium (Ωpm) and is defined based on the
Darcy permeability model (Kočı́ et al., 2019). Reactions are assumed to occur only in the catalytic material,
and the chemical-reactions and enthalpy sources are, in order, defined in the form

sri =

{
0 in Ωfs

νiϕc s
rMi in Ωpm

, sh = ϕc s
r(−∆Hr) , (5)

where νi is the i-th component stoichiometric coefficient, ϕc is the volumetric fraction of the catalyst, and
sr is the reaction rate computed from a rate law considering the local gas temperature and composition.

The gas mass density is assumed to be linked with pressure, and temperature via the ideal gas law (6)1,
where Rg is the universal gas constant and Mg is the composition-dependent molar mass of the gas (6)2,
where ωi, and Mi are the i-th chemical specie mass fraction, and the molar mass, respectively. Supposing
a gas mixture of n species, the mass fraction of the n-th component can be expressed using (6)3,

ρ =
pMg

Rg T
, Mg =

1∑n
i=1 ωi/Mi

, ωn = 1−
n−1∑

i=1

ωi . (6)

The main contribution of the present work lies in an extension of the specie diffusion mass flux calculation,
mD

i . In our previous implementations, the diffusive mass flux was computed using Fick’s law valid for
small concentrations. In the present work, universal Stefan-Maxwell description of the diffusive fluxes is
utilized and implemented within the developed solver. Working in the mass-average frame, the Stefan-
Maxwell relations can be expressed in a compact matrix form as;

[
ṁD

]
= ρ

[
D0
]

[∇ω] , (7)

where
[
ṁD

]
is the matrix of the diffusive mass fluxes of the (n− 1) chemical species, i.e. in three spatial

dimensions
[
ṁD

]
∈ R(n−1,3), and [∇ω] is the matrix of the mass fraction gradients, of the same dimen-

sion (Taylor and Krishna, 1993). The symbol
[
D0
]

stands for the (n − 1, n − 1) dimensional matrix of
the multicomponent diffusion coefficients in the mass average frame, which can be calculated as suggested
by Taylor and Krishna (1993),

[
D0
]

= [Bou] diag (ω/y)
[
B−1

]
diag (y/ω) [Buo] , (8)

where [Bou], and [Buo] are mutually inverse matrices of the transformation from the mass to molar average
frame and vice versa, respectively. The used form of the transformation matrix is,

[Bou]i,k = δi,k − ωi

(
1− ωn yk

yn ωk

)
, i, k = 1, . . . , n− 1 , (9)

where yi is the molar fraction of the i-th specie, and δi,k is Kronecker delta.
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Diagonal matrices diag (ω/y)i,i = ωi/yi and diag (y/ω)i,i = yi/ωi are ratio of the mass (ω) to the molar
fraction (y) and vice versa. Finally, the matrix of the diffusion coefficients in the molar average frame[
B−1

]
is computed as the inversion of the (n − 1, n − 1) dimensional matrix [B], whose coefficients are

defined as follows,

[B]i,i =
yi
Di,n

+

n∑

k=1,i6=k

yk
Di,k

, (10)

[B]i,j = −yi
(

1

Di,j
− 1

Di,n

)
. (11)

Note that the matrix of the diffusion coefficients
[
D0
]

is composition-dependent, which means that the
Stefan-Maxwell diffusion leads to a non-linear problem.

In general, it is difficult to determine the Stefan-Maxwell binary diffusion coefficients Di,j . However, con-
sidering the ideal gas and heterogenous domain, Ω = Ωfs ∪ Ωpm, we can assume that the Stefan-Maxwell
binary diffusion coefficients are equal to the effective Fick binary diffusion coefficients,Di,j = Deff

i,j , whose
calculation is taken from (Hlavatý et al., 2023a).

3. Numerical results

The new implementation of the diffusive flux was validated on the well known benchmark case of the Stefan
tube with the high concentration diffusive mass transfer.
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Fig. 1: a) Schematics of the Stefan tube, b) comparison of molar fraction profiles in the Stefan tube computed with
different implementations of the custom solver with the experimental data by Carty and Schrodt (1975).

The Stefan tube is a simple device schematically depicted in Fig. 1a. At the bottom of the tube, there is
a level of the acetone/methanol mixture. The vapor evaporates and diffuses to the top of the tube. A stream
of the inert gas flows across the top of the tube, which keeps the mole fraction of diffusing vapors close to
zero there (Taylor and Krishna, 1993). As the diffusion to the top of the tube is a relatively slow process,
the change of the liquid level is slow and we can assume a pseudo-steady state. With such an assumption,
the boundary conditions for the molar fractions of all the acetone and methanol are Dirichlet and constant,

yi(0) =
ps
i

p
, yi(L) = 0 , (12)

where ps
i is the saturated vapor pressure and the system of mass balances (3) can be reduced to the set

of the ordinary differential equations with the analytical solution. Furthermore, Carty and Schrodt (1975)
published experimental data on the diffusion of acetone/methanol mixture in pure nitrogen. This allowed
us to compare new solver concentration profiles (dashed lines) with the analytical solution (solid lines),
experiment (triangles), and the old solver implementation (dotted lines) in Fig. 1b.

Let us emphasize three things: (i) the old solver-implementation (old Fick), which assumes constant molar
mass of the gas, is not capable resolving cross-diffusion effects occurring in the Stefan tube with a high
concentration of the diluted gases, (ii) the new solver-implementation (new S-M) predicts results almost
identical to the analytical solution, and (iii) they provide quite good agreement with the experiment.

116



4. Conclusion

In the present contribution, we delineated fundamental principles of a solver applicable to the simulation
of heterogeneously-catalyzed reactive flows. The new solver allows for the simulations of non-diluted re-
active mixtures with simultaneous momentum, heat, and mass transfer, while the mass transfer treatment
comprises the Stefan-Maxwell approach to multi-component diffusion. For the simplified case of a mass
transfer in a Stefan tube, the new solver provides results in a perfect agreement with both the experiment and
the available analytical solution. The proposed solver extension allows one to properly describe and opti-
mize complex industrial processes, such as ethylene oxichlorination which is descibed in detail in (Hlavatý
et al., 2023a) and illustrated in Fig. 2.
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Fig. 2: a) Streamlines colored by streamwise velocity component in industrial packed bed,
b) oxygen mass fraction (ωO2 ) contours on longitudinal cut through the geometry.
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