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STOCHASTIC VERSION OF THE ARC-LENGTH METHOD

Náprstek J.∗, Fischer C.∗∗

Abstract: The solution of a nonlinear algebraic system using the incremental method, based on pre-defined
loading steps, fails in the vicinity of local extrema as well as around bifurcation points. The solution involved
the derivation of the so-called ’Arc-Length’ method. Its essence lies in not incrementing the system parameter
or any of the independent variables but rather the length of the response curve. The stochastic variant of
this method allows for working with a system where system parameters include random imperfections. This
contribution presents a variant that tracks the first two stochastic moments. Even in this simple case, interesting
phenomena can be observed, such as the disappearance of the energy barrier against equilibrium jump due to
random imperfections in the system.
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1. Introduction

In the study of slender and flexible structures, the amplitudes of deflections or vibrations, and consequently
the corresponding deformations, can reach values that cannot be approximately considered linear. Math-
ematical models must account for the arising nonlinearity, introducing significant complications in math-
ematical processing. Finding the equilibrium state requires solving nonlinear systems. There can exist
multiple equilibrium states, which in themselves can be stable or unstable. Transitions between them occur
spontaneously or through the breakthrough of energy barriers. Such a process may be entirely local and
insignificant for the overall system, allowing its loading to continue, or, alternatively, it may signify partial
or complete collapse of the system.

The general formulation of the problem in static analysis reads:

F(r,u, λ) = 0 , (1)

where r represents the internal parameters of the system (describing geometry, physical properties, etc.)
with m components; u is the displacement vector of nodes in the network with n components; λ is the load
parameter. The function F is assumed as sufficiently continuous.

A similar concept can be applied when seeking the stationary response of dynamic systems. If some form
of averaging is employed, it is possible to formulate the corresponding differential equation in slow time,
where the characteristic feature for the stationary solution is a zero differential part.

The solution of the system (1) using the incremental method with pre-defined loading steps ∆λ, see for
example (Jagannathan et al., 1975; Bergan, 1980), fails around the extremum of any of the curves ui(λ) and
further in the vicinity of a bifurcation point. After many attempts to find a solution, each with only a limited
range of applicability, a more universal method was proposed by Riks (1979), which was named the ”Arc-
Length” method. Its essence lies in not incrementing λ or any of the components of u but rather the length
of the response curve arc. The length of the vector |∆ut,∆λ| is specified, assuming that it does not differ
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Fig. 1: a) Incremental and Arc-Length method, b) stochastic Arc-Length method, c) mathematical expectation and
reliability zone.

significantly from the actual length of the arc as a curve. Thus, the increment of the load parameter is one
of the unknowns, rather than a predetermined quantity.

It turns out that the fundamental idea of the Arc-Length method can be extended to the domain of systems
with random imperfections, as shown by Náprstek (1994, 1999).

2. The stochastic arc-length method

In the stochastic case, the perturbed parameters r should be understood as the sum of the deterministic and
stochastic component:

r = rd + rε , (2)

where rd represents the nominal values of system parameters, and rε denotes parameter perturbations as
Gaussian random processes in suitable coordinates. The system (1) thus transforms into a system of stochas-
tic equations. Its solution will be formulated in weak stochastic sense.

Let ∂uFt(r,uNj
, λNj

) denote the incremental matrices in the j-th approximation step to the pointN , where
the coordinates statistically sufficiently satisfy the system (1). This point is approached from the initial point
M by incrementing the arc length by ∆s, as depicted in Fig. 1a:

∂uFt(r,uNj
, λNj

) = Ct
Nj

; ∂λF(r,uNj
, λNj

) = ΛNj
. (3)

Matrices CNj and ΛNj describing the local stiffness state at point Nj are influenced by imperfections rε.
The linear stochastic approximation of parameter deviations from the nominal state can be introduced as
linear combinations of suitable deterministic basis functions. The coefficients of this linear combination
are random processes. The basis functions can encompass, for example, systems of cones with vertices
at individual nodes of the mesh in case of discretized system, values of Fourier coefficients representing
the expansion of imperfect surfaces, etc. Consequently, imperfections are modeled as m random scalar
processes entering into (1) or (2). This implies that the local stiffness matrices (3) can be expressed in the
form

CNj
= C0

Nj
+

m∑

i=1

Ci
Nj
riε ; ΛNj

= Λ0
Nj

+

m∑

i=1

Λi
Nj
riε . (4)

where C0
Nj
, ,Λ0

Nj
represent the local stiffness matrices at point Nj of the system in the nominal state,

Ci
Nj
, Λi

Nj
denote the increments of matrices C0

Nj
, Λ0

Nj
due to a ”unit” imperfection, and riε is the value of

the i-th imperfection (a Gaussian-centered random process).

The increments of displacements and loads are expressed in a similar form, i.e., as linear combinations of
certain vectors, where the coefficients of these combinations are the same random processes riε as in the
case of (4):

∆uNj
= ∆u0

Nj
+

m∑

i=1

∆uiNj
riε ; ∆λNj

= ∆λ0Nj
+

m∑

i=1

∆λiNj
riε . (5)

The solution of the response of the imperfect system is based on the incremental form of the system (1)
supplemented by the constant arc-length condition ∆s = const. This means that the increment of the load is
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unknown; it is one of the unknowns, just like all the increments of displacements at the nodes. The advance
from point M to point N on the response hyperplane proceeds in two steps, as shown in Fig. 1b.

The initial step involves moving in the tangential direction towards point N0. This is accomplished by
solving a linear system that is generated as follows: starting with the incremental operation (1), subsequent
substitutions as per (3), (4), (5) (where point Nj is substituted with point M ), and then applying the mathe-
matical expectation operator E·. This process yields the first part of the solution; the part which describes the
mathematical expectation and generalized coordinates of the stochastic component of the response during
the first step from point M to point N0:

C0
M∆u0

M + Λ0
M∆λ0M +

m∑

i=1

m∑

k=1

(
Ci
M∆ukM + Λi

M∆λkM

)
Kik = 0 ,

∆u0t
M−∆u0

M + ∆λ0M−∆λ0M +

m∑

i=1

m∑

k=1

(
∆uitM−∆ukM + ∆λiM−∆λkM

)
Kik = ∆s(2) ,

(6)

where it was used:
E{riε · rkε} = Kik ; E{riε} = 0 . (7)

The second step of the calculation aims to reach pointN on the response curve through successive iterations,
with the goal of achieving the best possible accuracy. This is done to ensure the following equations are
optimally satisfied:

E{F(uN , λN )} = 0 ; E{riε · F(uN , λN )} = 0 . (8)

In the j-th step, that is, at point Nj , however, these equations are not satisfied, and the following holds:

E{F(uNj
, λNj

)} = ΦNj
; E{riε · F(uNj

, λNj
)} = Ψi

Nj
; i = 1, ..,m ; j = 0, 1, .. (9)

The iteration will take place in the hyperplane perpendicular to the previous tangent (line MN0) of the sur-
face (1), or along the hypersphere with the center at point M (depending on whether the linear or quadratic
version of the Arc-Length method is used). Similar steps as in the first step deliver the algebraic system of
(1 +m)(n+ 1) equations for the unknown increments ∆u0

Nj
, ∆λ0Nj

, ∆ukNj
, ∆λkNj

(k = 1, . . . ,m):

C0
Nj

∆u0
Nj+1

+ Λ0
Nj
·∆λ0Nj+1

+

m∑

i=1

m∑

k=1

(
Ci
Nj
·∆ukNj+1

+ Λi
Nj
·∆λkNj+1

)
Kik = −ΦNj

,

∆u0t
Nj

∆u0
Nj+1

+ ∆λ0Nj
∆λ0Nj+1

+

m∑

i=1

m∑

k=1

(
∆uitNj

∆ukNj+1
+ ∆λiNj

∆λkNj+1

)
Kik = 0 ,

(10)

m∑

i=1

(
Ci
Nj

∆u0
Nj+1

+ Λi
Nj

∆λ0Nj+1

)
K li +

m∑

k=1

(
C0
Nj

∆ukNj+1
+ Λ0

Nj
∆λkNj+1

)
K lk = −Ψl

Nj
,

m∑

i=1

(
∆uitNj

∆u0
Nj+1

+ ∆λiNj
∆λ0Nj+1

)
K li +

m∑

k=1

(
∆u0t

Nj
∆ukNj+1

+ ∆λ0Nj
∆λkNj+1

)
K lk = 0 .

(11)

Based on these calculations, the overall response of the system during one step of the Arc-Length method
from point M to point N can be described as

uN = uM +

µ∑

j=0

(
∆u0

Nj
+

m∑

i=1

∆uiNj
riε

)
. (12)
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Hence, the value of the mathematical expectation and mutual correlation of the individual response compo-
nent at point N read

E{uN} = uM +

µ∑

j=0

∆u0
Nj
, (13)

E{uN · utN} − E{uN} · E{utN} =

µ∑

k=0

µ∑

j=0

(
m∑

i=1

m∑

l=1

∆uiNj
∆ultNk

·Kil

)
. (14)

Formulas (13), (14) enable tracing the curves of the most probable response (mathematical mean) and
the corresponding dispersion zone. Properties (e.g. diameter) of this zone indicates how much the critical
load level needs to be reduced due to introduced imperfections.

The outcomes of the entire calculation can be understood with reference to Fig. 1c. For every point along
the curve of the mathematical mean response, there is a corresponding curve depicting the probability
density distribution of deviations from the mathematical mean at individual nodes or degrees of freedom.
Given that the analysis was confined to the first two stochastic moments, each of these curves represents
a Gaussian distribution with a variance derived from the second-moment calculation.

Consequently, upper and lower bounds are established, forming a region on both sides of the curve which
represents the most probable response. This region is known as the reliability region. It ensures that, with
the specified probability and imperfection statistics, the system’s response will not fall outside this defined
area. The process of deriving both upper and lower bound curves can result in a complex profile, as sug-
gested in Fig. 1c. This complexity indicates that certain sections of these curves may not be relevant for the
original purpose. Both upper and lower curves may exhibit inflection points and various special properties,
necessitating evaluation methods that exploit the particular characteristics of their geometry.

3. Concluding remarks

Tthe stochastic Arc-Length method is a powerful tool for addressing the challenges posed by uncertainties
and nonlinearities in structural analysis, providing insights into the reliability of structures under stochastic
conditions. It uses the arc length as a parameter to trace the response of the structure. This allows for
efficient tracking of nonlinear responses, especially in situations where traditional methods may encounter
convergence issues. While the method often focuses on the first few stochastic moments, higher moments
may be considered for a more comprehensive stochastic analysis.
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