Engineering Mechanics

International Conference

Proceedings Vol. 23 (2017)


ENGINEERING MECHANICS 2017

23rd INTERNATIONAL CONFERENCE
May 15 – 18, 2017, Svratka, Czech Republic
;
Editors: Vladimír Fuis

Copyright © 2017 Brno University of Technology, Faculty of Mechanical Engineering, Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno

ISBN 978-80-214-5497-2 (printed)
ISSN 1805-8248 (printed)
ISSN 1805-8256 (electronic)

list of papers scientific commitee

NON-HOLONOMIC PLANAR AND SPATIAL MODEL OF A BALL-TYPE TUNED MASS DAMPING DEVICE
Náprstek J., Fischer C.
pages 698 - 701, full text

The area of tuned mass dampers is a wide field of inspiration for theoretical studies in non-linear dynamics and dynamic stability. The studies attempt to estimate behaviour of diverse damping devices and their reliability. The current paper deals with the response of a heavy ball rolling inside a spherical cavity under horizontal kinematic excitation. The non-linear system consists of six degrees of freedom with three non-holonomic constraints. The contact between the ball and the cavity surface is supposed to be perfect without any sliding. The mathematical model using the Appell-Gibbs function of acceleration energy is developed and discussed. Comparison with previous planar (SDOF) model which is based on the Lagrangian procedure is given. The system has an auto-parametric character and therefore semi-trivial solutions and their dynamic stability can be analysed. The most important post-critical regimes are outlined and qualitatively evaluated in resonance domain. Numerical experiments were performed when excitation frequency is slowly swept up and down to identify different modes of response. Some applications in civil engineering as a tuned mass damper, which can be used on slender structures, are mentioned. The proposed device is compared with a conventional pendulum damper. Strengths and weaknesses of both absorbers types are discussed.


back to list of papers

Text and facts may be copied and used freely, but credit should be given to these Proceedings.

All papers were reviewed by members of the scientific committee.


imce   Powered by Imce 3.13  © 2020, Pavel Formánek, Institute of Thermomechanics AS CR, v.v.i. [generated: 0.0257s]